When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Macaulay's method - Wikipedia

    en.wikipedia.org/wiki/Macaulay's_method

    The starting point is the relation from Euler-Bernoulli beam theory = Where is the deflection and is the bending moment. This equation [7] is simpler than the fourth-order beam equation and can be integrated twice to find if the value of as a function of is known.

  3. Bending moment - Wikipedia

    en.wikipedia.org/wiki/Bending_moment

    In solid mechanics, a bending moment is the reaction induced in a structural element when an external force or moment is applied to the element, causing the element to bend. [ 1 ] [ 2 ] The most common or simplest structural element subjected to bending moments is the beam .

  4. Macaulay brackets - Wikipedia

    en.wikipedia.org/wiki/Macaulay_brackets

    Macaulay's notation is commonly used in the static analysis of bending moments of a beam. This is useful because shear forces applied on a member render the shear and moment diagram discontinuous. Macaulay's notation also provides an easy way of integrating these discontinuous curves to give bending moments, angular deflection, and so on.

  5. Shear and moment diagram - Wikipedia

    en.wikipedia.org/wiki/Shear_and_moment_diagram

    Shear and Bending moment diagram for a simply supported beam with a concentrated load at mid-span. Shear force and bending moment diagrams are analytical tools used in conjunction with structural analysis to help perform structural design by determining the value of shear forces and bending moments at a given point of a structural element such as a beam.

  6. Direct integration of a beam - Wikipedia

    en.wikipedia.org/wiki/Direct_integration_of_a_beam

    Direct integration is a structural analysis method for measuring internal shear, internal moment, rotation, and deflection of a beam. Positive directions for forces acting on an element. For a beam with an applied weight w ( x ) {\displaystyle w(x)} , taking downward to be positive, the internal shear force is given by taking the negative ...

  7. Bending - Wikipedia

    en.wikipedia.org/wiki/Bending

    where , are the coordinates of a point on the cross section at which the stress is to be determined as shown to the right, and are the bending moments about the y and z centroid axes, and are the second moments of area (distinct from moments of inertia) about the y and z axes, and is the product of moments of area. Using this equation it is ...

  8. Theorem of three moments - Wikipedia

    en.wikipedia.org/wiki/Theorem_of_three_moments

    where a 1 is the area on the bending moment diagram due to vertical loads on AB, a 2 is the area due to loads on BC, x 1 is the distance from A to the centroid of the bending moment diagram of beam AB, x 2 is the distance from C to the centroid of the area of the bending moment diagram of beam BC.

  9. Flexural rigidity - Wikipedia

    en.wikipedia.org/wiki/Flexural_rigidity

    where is the flexural modulus (in Pa), is the second moment of area (in m 4), is the transverse displacement of the beam at x, and () is the bending moment at x. The flexural rigidity (stiffness) of the beam is therefore related to both E {\displaystyle E} , a material property, and I {\displaystyle I} , the physical geometry of the beam.