Search results
Results From The WOW.Com Content Network
A sequence of idempotent subroutines where at least one subroutine is different from the others, however, is not necessarily idempotent if a later subroutine in the sequence changes a value that an earlier subroutine depends on—idempotence is not closed under sequential composition. For example, suppose the initial value of a variable is 3 ...
In mathematics, an idempotent binary relation is a binary relation R on a set X (a subset of Cartesian product X × X) for which the composition of relations R ∘ R is the same as R. [ 1 ] [ 2 ] This notion generalizes that of an idempotent function to relations.
Round-by-chop: The base-expansion of is truncated after the ()-th digit. This rounding rule is biased because it always moves the result toward zero. Round-to-nearest: () is set to the nearest floating-point number to . When there is a tie, the floating-point number whose last stored digit is even (also, the last digit, in binary form, is equal ...
This variant of the round-to-nearest method is also called convergent rounding, statistician's rounding, Dutch rounding, Gaussian rounding, odd–even rounding, [6] or bankers' rounding. [ 7 ] This is the default rounding mode used in IEEE 754 operations for results in binary floating-point formats.
An idempotent e: A → A is said to split if there is an object B and morphisms f: A → B, g : B → A such that e = g f and 1 B = f g. The Karoubi envelope of C , sometimes written Split(C) , is the category whose objects are pairs of the form ( A , e ) where A is an object of C and e : A → A {\displaystyle e:A\rightarrow A} is an ...
The maximal ring of quotients Q(R) (in the sense of Utumi and Lambek) of a Boolean ring R is a Boolean ring, since every partial endomorphism is idempotent. [ 6 ] Every prime ideal P in a Boolean ring R is maximal : the quotient ring R / P is an integral domain and also a Boolean ring, so it is isomorphic to the field F 2 , which shows the ...
In mathematical analysis, idempotent analysis is the study of idempotent semirings, such as the tropical semiring. The lack of an additive inverse in the semiring is compensated somewhat by the idempotent rule A ⊕ A = A {\displaystyle A\oplus A=A} .
In mathematics, an idempotent measure on a metric group is a probability measure that equals its convolution with itself; in other words, an idempotent measure is an idempotent element in the topological semigroup of probability measures on the given metric group.