Search results
Results From The WOW.Com Content Network
Prolog is a logic programming language that has its origins in artificial intelligence, automated theorem proving and computational linguistics. [1] [2] [3]Prolog has its roots in first-order logic, a formal logic, and unlike many other programming languages, Prolog is intended primarily as a declarative programming language: the program is a set of facts and rules, which define relations.
In computer science, pattern matching is the act of checking a given sequence of tokens for the presence of the constituents of some pattern. In contrast to pattern recognition, the match usually has to be exact: "either it will or will not be a match." The patterns generally have the form of either sequences or tree structures.
Operationally, Prolog's execution strategy can be thought of as a generalization of function calls in other languages, one difference being that multiple clause heads can match a given call. In that case, the system creates a choice-point, unifies the goal with the clause head of the first alternative, and continues with the goals of that first ...
Backward chaining occurs in Prolog, where a more limited logical representation is used, Horn Clauses. Pattern-matching, specifically unification, is used in Prolog. A more flexible kind of problem-solving occurs when reasoning about what to do next occurs, rather than simply choosing one of the available actions.
B-Prolog was a high-performance implementation of the standard Prolog language with several extended features including matching clauses, action rules for event handling, finite-domain constraint solving, arrays and hash tables, declarative loops, and tabling. First released in 1994, B-Prolog is now a widely used CLP system.
It should only contain pages that are Pattern matching programming languages or lists of Pattern matching programming languages, as well as subcategories containing those things (themselves set categories). Topics about Pattern matching programming languages in general should be placed in relevant topic categories.
Pattern matching programming languages (2 C, 30 P) R. Regular expressions (1 C, 12 P) S. String matching algorithms (1 C, 16 P) Pages in category "Pattern matching"
In higher-order unification, possibly restricted to higher-order pattern unification, terms may include lambda expressions, and equivalence is up to beta-reduction. This version is used in proof assistants and higher-order logic programming, for example Isabelle , Twelf , and lambdaProlog .