Search results
Results From The WOW.Com Content Network
Amino acids vary in their ability to form the various secondary structure elements. Proline and glycine are sometimes known as "helix breakers" because they disrupt the regularity of the α helical backbone conformation; however, both have unusual conformational abilities and are commonly found in turns.
It is the most abundant protein in mammals, [1] making up 25% to 35% of protein content. Amino acids are bound together to form a triple helix of elongated fibril [2] known as a collagen helix. It is mostly found in cartilage, bones, tendons, ligaments, and skin. Vitamin C is vital for collagen synthesis, while Vitamin E improves its production.
Peptide bond formation via dehydration reaction. When two amino acids form a dipeptide through a peptide bond, [1] it is a type of condensation reaction. [2] In this kind of condensation, two amino acids approach each other, with the non-side chain (C1) carboxylic acid moiety of one coming near the non-side chain (N2) amino moiety of the other.
The condensation of two amino acids to form a dipeptide. The two amino acid residues are linked through a peptide bond. As both the amine and carboxylic acid groups of amino acids can react to form amide bonds, one amino acid molecule can react with another and become joined through an amide linkage. This polymerization of amino acids is what ...
Proteins form by amino acids undergoing condensation reactions, in which the amino acids lose one water molecule per reaction in order to attach to one another with a peptide bond. By convention, a chain under 30 amino acids is often identified as a peptide, rather than a protein. [1]
A polypeptide is a single linear chain of many amino acids (any length), held together by amide bonds. A protein consists of one or more polypeptides (more than about 50 amino acids long). An oligopeptide consists of only a few amino acids (between two and twenty).
An alpha helix (or α-helix) is a sequence of amino acids in a protein that are twisted into a coil (a helix). The alpha helix is the most common structural arrangement in the secondary structure of proteins. It is also the most extreme type of local structure, and it is the local structure that is most easily predicted from a sequence of amino ...
The ribosomes catalyze the formation of covalent peptide bonds between the encoded amino acids to form a polypeptide chain. [citation needed] Following translation the polypeptide chain must fold to form a functional protein; for example, to function as an enzyme the polypeptide chain must fold correctly to produce a functional active site.