Search results
Results From The WOW.Com Content Network
An orbital plane as viewed relative to a plane of reference. An orbital plane can also be seen in relative to conic sections, in which the orbital path is defined as the intersection between a plane and a cone. Parabolic (1) and hyperbolic (3) orbits are escape orbits, whereas elliptical and circular orbits (2) are captive. The orbital plane of ...
For orbital periods longer than the Earth's rotational period, an increase in the orbital period corresponds to a longitudinal stretching out of the (apparent retrograde) ground track. A satellite whose orbital period is equal to the rotational period of the Earth is said to be in a geosynchronous orbit. Its ground track will have a "figure ...
The plane tangent to celestial sphere for extrasolar objects; On the plane of reference, a zero-point must be defined from which the angles of longitude are measured. This is usually defined as the point on the celestial sphere where the plane crosses the prime hour circle (the hour circle occupied by the First Point of Aries), also known as ...
Orbits around L 2 are used by missions that always want both Earth and the Sun behind them. This enables a single shield to block radiation from both Earth and the Sun, allowing passive cooling of sensitive instruments. Examples include the Wilkinson Microwave Anisotropy Probe and the James Webb Space Telescope. L1, L2, and L3 are unstable ...
Ignoring the influence of other Solar System bodies, Earth's orbit, also called Earth's revolution, is an ellipse with the Earth–Sun barycenter as one focus with a current eccentricity of 0.0167. Since this value is close to zero, the center of the orbit is relatively close to the center of the Sun (relative to the size of the orbit).
It is expressed as the angle between a reference plane and the orbital plane or axis of direction of the orbiting object. For a satellite orbiting the Earth directly above the Equator, the plane of the satellite's orbit is the same as the Earth's equatorial plane, and the satellite's orbital inclination is 0°. The general case for a circular ...
An animation showing a low eccentricity orbit (near-circle, in red), and a high eccentricity orbit (ellipse, in purple). In celestial mechanics, an orbit (also known as orbital revolution) is the curved trajectory of an object [1] such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such ...
Beta angle ()In orbital mechanics, the beta angle is the angle between a satellite's orbital plane around Earth and the geocentric position of the Sun. [1] The beta angle determines the percentage of time that a satellite in low Earth orbit (LEO) spends in direct sunlight, absorbing solar radiation. [2]