Search results
Results From The WOW.Com Content Network
The Bernoulli model admits a complete statistic. [1] Let X be a random sample of size n such that each X i has the same Bernoulli distribution with parameter p.Let T be the number of 1s observed in the sample, i.e. = =.
All measurements are subject to uncertainty and a measurement result is complete only when it is accompanied by a statement of the associated uncertainty, such as the standard deviation. By international agreement, this uncertainty has a probabilistic basis and reflects incomplete knowledge of the quantity value. It is a non-negative parameter. [1]
Change of variables is an operation that is related to substitution. However these are different operations, as can be seen when considering differentiation or integration (integration by substitution). A very simple example of a useful variable change can be seen in the problem of finding the roots of the sixth-degree polynomial:
The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions.Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point.
Complete variety, an algebraic variety that satisfies an analog of compactness; Complete orthonormal basis—see Orthonormal basis#Incomplete orthogonal sets; Complete sequence, a type of integer sequence; Ultrafilter on a set § Completeness
A complete graph with n nodes represents the edges of an (n – 1)-simplex. Geometrically K 3 forms the edge set of a triangle, K 4 a tetrahedron, etc. The Császár polyhedron, a nonconvex polyhedron with the topology of a torus, has the complete graph K 7 as its skeleton. [15] Every neighborly polytope in four or more dimensions also has a ...
Advice on the application of change of variable to PDEs is given by mathematician J. Michael Steele: [1] "There is nothing particularly difficult about changing variables and transforming one equation to another, but there is an element of tedium and complexity that slows us down.
In calculus, integration by substitution, also known as u-substitution, reverse chain rule or change of variables, [1] is a method for evaluating integrals and antiderivatives. It is the counterpart to the chain rule for differentiation , and can loosely be thought of as using the chain rule "backwards."