When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.

  3. Exact trigonometric values - Wikipedia

    en.wikipedia.org/wiki/Exact_trigonometric_values

    The trigonometric functions of angles that are multiples of 15°, 18°, or 22.5° have simple algebraic values. These values are listed in the following table for angles from 0° to 45°. [1]

  4. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    The computation of (1 + ⁠ iπ / N ⁠) N is displayed as the combined effect of N repeated multiplications in the complex plane, with the final point being the actual value of (1 + ⁠ iπ / N ⁠) N. It can be seen that as N gets larger (1 + ⁠ iπ / N ⁠) N approaches a limit of −1. Euler's identity asserts that is

  5. List of formulae involving π - Wikipedia

    en.wikipedia.org/wiki/List_of_formulae_involving_π

    3.1 Integrals. 3.2 Efficient infinite series. 3.3 Other infinite series. 3.4 Machin-like formulae. 3.5 Infinite products. 3.6 Arctangent formulas. 3.7 Complex functions.

  6. Unit circle - Wikipedia

    en.wikipedia.org/wiki/Unit_circle

    In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. [1] Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Euclidean plane. In topology, it is often denoted as S 1 because it is a one-dimensional unit n-sphere ...

  7. Indiana pi bill - Wikipedia

    en.wikipedia.org/wiki/Indiana_Pi_Bill

    An 1897 political cartoon mocking the Indiana pi bill. In 1894, Indiana physician Edward J. Goodwin (c. 1825 – 1902 [2]), also called "Edwin Goodwin" by some sources, [3] believed that he had discovered a way of squaring the circle. [4]

  8. 2π theorem - Wikipedia

    en.wikipedia.org/wiki/2π_theorem

    A horoball packing argument due to Thurston shows that there are at most 48 slopes to avoid on each cusp to get a hyperbolic 3-manifold. For one-cusped hyperbolic 3-manifolds, an improvement due to Colin Adams gives 24 exceptional slopes. This result was later improved independently by Ian Agol and Marc Lackenby with the 6 theorem.

  9. Pi - Wikipedia

    en.wikipedia.org/wiki/Pi

    The number π (/ p aɪ / ⓘ; spelled out as "pi") is a mathematical constant, approximately equal to 3.14159, that is the ratio of a circle's circumference to its diameter.It appears in many formulae across mathematics and physics, and some of these formulae are commonly used for defining π, to avoid relying on the definition of the length of a curve.