Search results
Results From The WOW.Com Content Network
Liquid hydrogen also has a much higher specific energy than gasoline, natural gas, or diesel. [12] The density of liquid hydrogen is only 70.85 kg/m 3 (at 20 K), a relative density of just 0.07. Although the specific energy is more than twice that of other fuels, this gives it a remarkably low volumetric energy density, many fold lower.
Liquid hydrogen is a common rocket propellant, and it can also be used as the fuel for an internal combustion engine or fuel cell. [citation needed] Solid hydrogen can be made at standard pressure, by decreasing the temperature below hydrogen's melting point of 14.01 K (−259.14 °C; −434.45 °F).
Japan has a liquid hydrogen (LH2) storage facility at a terminal in Kobe, and was expected to receive the first shipment of liquid hydrogen via LH2 carrier in 2020. [162] Hydrogen is liquified by reducing its temperature to −253 °C, similar to liquified natural gas (LNG) which is stored at −162 °C.
A Assuming an altitude of 194 metres above mean sea level (the worldwide median altitude of human habitation), an indoor temperature of 23 °C, a dewpoint of 9 °C (40.85% relative humidity), and 760 mmHg sea level–corrected barometric pressure (molar water vapor content = 1.16%).
1 H hydrogen (H 2) use (H 2) 0.904 CRC (H 2) 0.90 LNG: 0.904 2 He ... Values refer to the enthalpy change in the conversion of liquid to gas at the boiling point ...
Liquid nitrogen. Liquefaction of gases is physical conversion of a gas into a liquid state (condensation). The liquefaction of gases is a complicated process that uses various compressions and expansions to achieve high pressures and very low temperatures, using, for example, turboexpanders.
Solid hydrogen is the solid state of the element hydrogen. At standard pressure , this is achieved by decreasing the temperature below hydrogen's melting point of 14.01 K (−259.14 °C; −434.45 °F).
Liquid hydrogen requires such low temperatures that leaks may solidify other air components such as nitrogen and oxygen. Solid oxygen can mix with liquid hydrogen, forming a mixture that could self-ignite. A jet fire can also ignite. [4] At high concentrations, hydrogen gas is an asphyxiant, but is not otherwise toxic. [5]