Ads
related to: chromium oxide to sulfur reaction with water
Search results
Results From The WOW.Com Content Network
Chromium(III) oxide is amphoteric. Although insoluble in water, it reacts with acid to produce salts of hydrated chromium ions such as [Cr(H 2 O) 6] 3+. [11] It is also attacked by concentrated alkali to yield salts of [Cr(OH) 6] 3−. When heated with finely divided carbon or aluminium, it is reduced to chromium metal: Cr 2 O 3 + 2 Al → 2 Cr ...
For comparison of different reactions, all values of ΔG refer to the reaction of the same quantity of oxygen, chosen as one mole O (1 ⁄ 2 mol O 2) by some authors [2] and one mole O 2 by others. [3] The diagram shown refers to 1 mole O 2, so that e.g. the line for the oxidation of chromium shows ΔG for the reaction 4 ⁄ 3 Cr(s) + O 2 (g ...
A large number of chromium(III) compounds are known, such as chromium(III) nitrate, chromium(III) acetate, and chromium(III) oxide. [8] Chromium(III) can be obtained by dissolving elemental chromium in acids like hydrochloric acid or sulfuric acid, but it can also be formed through the reduction of chromium(VI) by cytochrome c7. [9] The Cr 3+
A subsequent low temperature shift reactor lowers the carbon monoxide content to <1%. Commercial HTS catalysts are based on iron oxide–chromium oxide and the LTS catalyst is a copper-based. The copper catalyst is susceptible to poisoning by sulfur. Sulfur compounds are removed prior to the LTS reactor by a guard bed.
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
Chromium(II) sulfide may be formed by reaction of chromium metal with sulfur or hydrogen sulfide at high temperature. It may also be formed by reacting chromium(III) chloride with H 2 S, reducing chromium(III) sulfide with hydrogen, or by double replacement reaction of lithium sulfide with chromium(II) chloride. [5] Cr + S → CrS Cr + H 2 S ...