When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Sum of squares - Wikipedia

    en.wikipedia.org/wiki/Sum_of_squares

    The squared Euclidean distance between two points, equal to the sum of squares of the differences between their coordinates; Heron's formula for the area of a triangle can be re-written as using the sums of squares of a triangle's sides (and the sums of the squares of squares) The British flag theorem for rectangles equates two sums of two ...

  3. Sum-of-squares optimization - Wikipedia

    en.wikipedia.org/wiki/Sum-of-Squares_Optimization

    A sum-of-squares optimization program is an optimization problem with a linear cost function and a particular type of constraint on the decision variables. These constraints are of the form that when the decision variables are used as coefficients in certain polynomials , those polynomials should have the polynomial SOS property.

  4. Gauss–Newton algorithm - Wikipedia

    en.wikipedia.org/wiki/Gauss–Newton_algorithm

    The Gauss–Newton algorithm is used to solve non-linear least squares problems, which is equivalent to minimizing a sum of squared function values. It is an extension of Newton's method for finding a minimum of a non-linear function .

  5. Least trimmed squares - Wikipedia

    en.wikipedia.org/wiki/Least_trimmed_squares

    Least trimmed squares (LTS), or least trimmed sum of squares, is a robust statistical method that fits a function to a set of data whilst not being unduly affected by the presence of outliers [1]. It is one of a number of methods for robust regression .

  6. Explained sum of squares - Wikipedia

    en.wikipedia.org/wiki/Explained_sum_of_squares

    The explained sum of squares (ESS) is the sum of the squares of the deviations of the predicted values from the mean value of a response variable, in a standard regression model — for example, y i = a + b 1 x 1i + b 2 x 2i + ... + ε i, where y i is the i th observation of the response variable, x ji is the i th observation of the j th ...

  7. Sum of squares function - Wikipedia

    en.wikipedia.org/wiki/Sum_of_squares_function

    The number of ways to write a natural number as sum of two squares is given by r 2 (n).It is given explicitly by = (() ())where d 1 (n) is the number of divisors of n which are congruent to 1 modulo 4 and d 3 (n) is the number of divisors of n which are congruent to 3 modulo 4.

  8. Residual sum of squares - Wikipedia

    en.wikipedia.org/wiki/Residual_sum_of_squares

    The general regression model with n observations and k explanators, the first of which is a constant unit vector whose coefficient is the regression intercept, is = + where y is an n × 1 vector of dependent variable observations, each column of the n × k matrix X is a vector of observations on one of the k explanators, is a k × 1 vector of true coefficients, and e is an n× 1 vector of the ...

  9. Lack-of-fit sum of squares - Wikipedia

    en.wikipedia.org/wiki/Lack-of-fit_sum_of_squares

    In statistics, a sum of squares due to lack of fit, or more tersely a lack-of-fit sum of squares, is one of the components of a partition of the sum of squares of residuals in an analysis of variance, used in the numerator in an F-test of the null hypothesis that says that a proposed model fits well.