When.com Web Search

  1. Ad

    related to: matrix identity proofs worksheet

Search results

  1. Results From The WOW.Com Content Network
  2. Woodbury matrix identity - Wikipedia

    en.wikipedia.org/wiki/Woodbury_matrix_identity

    To prove this result, we will start by proving a simpler one. Replacing A and C with the identity matrix I, we obtain another identity which is a bit simpler: (+) = (+). To recover the original equation from this reduced identity, replace by and by .

  3. Gamma matrices - Wikipedia

    en.wikipedia.org/wiki/Gamma_matrices

    The defining property for the gamma matrices to generate a Clifford algebra is the anticommutation relation {,} = + = ,where the curly brackets {,} represent the anticommutator, is the Minkowski metric with signature (+ − − −), and is the 4 × 4 identity matrix.

  4. Sherman–Morrison formula - Wikipedia

    en.wikipedia.org/wiki/Sherman–Morrison_formula

    To prove that the backward direction + + is invertible with inverse given as above) is true, we verify the properties of the inverse. A matrix (in this case the right-hand side of the Sherman–Morrison formula) is the inverse of a matrix (in this case +) if and only if = =.

  5. Identity matrix - Wikipedia

    en.wikipedia.org/wiki/Identity_matrix

    The th column of an identity matrix is the unit vector, a vector whose th entry is 1 and 0 elsewhere. The determinant of the identity matrix is 1, and its trace is . The identity matrix is the only idempotent matrix with non-zero determinant. That is, it is the only matrix such that:

  6. Jacobi's formula - Wikipedia

    en.wikipedia.org/wiki/Jacobi's_formula

    Lemma 1. ′ =, where ′ is the differential of . This equation means that the differential of , evaluated at the identity matrix, is equal to the trace.The differential ′ is a linear operator that maps an n × n matrix to a real number.

  7. Weinstein–Aronszajn identity - Wikipedia

    en.wikipedia.org/wiki/Weinstein–Aronszajn_identity

    1 Proof. 2 Applications. 3 References. Toggle the table of contents. ... It is the determinant analogue of the Woodbury matrix identity for matrix inverses. Proof

  8. Binet–Cauchy identity - Wikipedia

    en.wikipedia.org/wiki/Binet–Cauchy_identity

    A general form, also known as the Cauchy–Binet formula, states the following: Suppose A is an m×n matrix and B is an n×m matrix. If S is a subset of {1, ..., n} with m elements, we write A S for the m×m matrix whose columns are those columns of A that have indices from S.

  9. Idempotent matrix - Wikipedia

    en.wikipedia.org/wiki/Idempotent_matrix

    The only non-singular idempotent matrix is the identity matrix; that is, if a non-identity matrix is idempotent, ... This can be shown using proof by induction.