Search results
Results From The WOW.Com Content Network
This is a documentation subpage for Template:Cell biology. It may contain usage information, ... An example of the template with all diagrams activated.
The elongation and membrane targeting stages of eukaryotic translation. The ribosome is green and yellow, the tRNAs are dark-blue, and the other proteins involved are light-blue. Elongation depends on eukaryotic elongation factors. At the end of the initiation step, the mRNA is positioned so that the next codon can be translated during the ...
EF-Tu (elongation factor thermo unstable) is a prokaryotic elongation factor responsible for catalyzing the binding of an aminoacyl-tRNA (aa-tRNA) to the ribosome. It is a G-protein , and facilitates the selection and binding of an aa-tRNA to the A-site of the ribosome.
Setting a value for any of the cell or organelle attributes will make its diagram visible Any number and combination of diagram attributes may be set When multiple diagrams are activated, the title is suppressed
[[Category:Biology templates]] to the <includeonly> section at the bottom of that page. Otherwise, add <noinclude>[[Category:Biology templates]]</noinclude> to the end of the template code, making sure it starts on the same line as the code's last character.
The elongation factor EF-Tu has been shown to stabilize the bond by preventing weak acyl linkages from being hydrolyzed. [ 12 ] All together, the actual stability of the ester bond influences the susceptibility of the aa-tRNA to hydrolysis within the body at physiological pH and ion concentrations.
EF-G (elongation factor G, historically known as translocase) is a prokaryotic elongation factor involved in mRNA translation. As a GTPase , EF-G catalyzes the movement (translocation) of transfer RNA (tRNA) and messenger RNA (mRNA) through the ribosome .
It helps with elongation and also plays a role in termination. EIF5A contains the unusual amino acid hypusine. [11] eIF5B is a GTPase, and is involved in assembly of the full ribosome. It is the functional eukaryotic analog of bacterial IF2. [12]