When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Isenthalpic process - Wikipedia

    en.wikipedia.org/wiki/Isenthalpic_process

    If a steady-state, steady-flow process is analysed using a control volume, everything outside the control volume is considered to be the surroundings. [2] Such a process will be isenthalpic if there is no transfer of heat to or from the surroundings, no work done on or by the surroundings, and no change in the kinetic energy of the fluid. [3]

  3. Enthalpy - Wikipedia

    en.wikipedia.org/wiki/Enthalpy

    Enthalpy (/ ˈ ɛ n θ əl p i / ⓘ) is the sum of a thermodynamic system's internal energy and the product of its pressure and volume. [1] It is a state function in thermodynamics used in many measurements in chemical, biological, and physical systems at a constant external pressure, which is conveniently provided by the large ambient atmosphere.

  4. Entropy (order and disorder) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(order_and_disorder)

    The relationship between entropy, order, and disorder in the Boltzmann equation is so clear among physicists that according to the views of thermodynamic ecologists Sven Jorgensen and Yuri Svirezhev, "it is obvious that entropy is a measure of order or, most likely, disorder in the system."

  5. Entropy - Wikipedia

    en.wikipedia.org/wiki/Entropy

    Entropy is a scientific concept that is most commonly associated with a state of disorder, randomness, or uncertainty. The term and the concept are used in diverse ...

  6. Entropy (classical thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(classical...

    Figure 1. A thermodynamic model system. Differences in pressure, density, and temperature of a thermodynamic system tend to equalize over time. For example, in a room containing a glass of melting ice, the difference in temperature between the warm room and the cold glass of ice and water is equalized by energy flowing as heat from the room to the cooler ice and water mixture.

  7. Isentropic process - Wikipedia

    en.wikipedia.org/wiki/Isentropic_process

    In contrast, if the process is irreversible, entropy is produced within the system; consequently, in order to maintain constant entropy within the system, energy must be simultaneously removed from the system as heat. For reversible processes, an isentropic transformation is carried out by thermally "insulating" the system from its surroundings.

  8. Fundamental thermodynamic relation - Wikipedia

    en.wikipedia.org/wiki/Fundamental_thermodynamic...

    The entropy is thus a measure of the uncertainty about exactly which quantum state the system is in, given that we know its energy to be in some interval of size . Deriving the fundamental thermodynamic relation from first principles thus amounts to proving that the above definition of entropy implies that for reversible processes we have:

  9. Introduction to entropy - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_entropy

    Thermodynamic entropy is measured as a change in entropy to a system containing a sub-system which undergoes heat transfer to its surroundings (inside the system of interest). It is based on the macroscopic relationship between heat flow into the sub-system and the temperature at which it occurs summed over the boundary of that sub-system.