Search results
Results From The WOW.Com Content Network
For many algorithms that solve these tasks, the data in raw representation have to be explicitly transformed into feature vector representations via a user-specified feature map: in contrast, kernel methods require only a user-specified kernel, i.e., a similarity function over all pairs of data points computed using inner products.
Kernel trick is also applicable when kernel based classifier is used, such as SVM. Pyramid match kernel is newly developed one based on the BoW model. The local feature approach of using BoW model representation learnt by machine learning classifiers with different kernels (e.g., EMD-kernel and kernel) has been vastly tested in the area of ...
The kernel trick, where dot products are replaced by kernels, is easily derived in the dual representation of the SVM problem. This allows the algorithm to fit the maximum-margin hyperplane in a transformed feature space. The transformation may be nonlinear and the transformed space high-dimensional; although the classifier is a hyperplane in ...
Least-squares support-vector machines (LS-SVM) for statistics and in statistical modeling, are least-squares versions of support-vector machines (SVM), which are a set of related supervised learning methods that analyze data and recognize patterns, and which are used for classification and regression analysis.
The BoW representation of a text removes all word ordering. For example, the BoW representation of "man bites dog" and "dog bites man" are the same, so any algorithm that operates with a BoW representation of text must treat them in the same way. Despite this lack of syntax or grammar, BoW representation is fast and may be sufficient for simple ...
Since the value of the RBF kernel decreases with distance and ranges between zero (in the infinite-distance limit) and one (when x = x'), it has a ready interpretation as a similarity measure. [2] The feature space of the kernel has an infinite number of dimensions; for =, its expansion using the multinomial theorem is: [3]
full expansion of the kernel prior to training/testing with a linear SVM, [5] i.e. full computation of the mapping φ as in polynomial regression; basket mining (using a variant of the apriori algorithm) for the most commonly occurring feature conjunctions in a training set to produce an approximate expansion; [6] inverted indexing of support ...
Multiple kernel learning refers to a set of machine learning methods that use a predefined set of kernels and learn an optimal linear or non-linear combination of kernels as part of the algorithm. Reasons to use multiple kernel learning include a) the ability to select for an optimal kernel and parameters from a larger set of kernels, reducing ...