Search results
Results From The WOW.Com Content Network
Axial cross section of Carnot's heat engine. In this diagram, abgh is a cylindrical vessel, cd is a movable piston, and A and B are constant–temperature bodies. The vessel may be placed in contact with either body or removed from both (as it is here). [1] A Carnot heat engine [2] is a theoretical heat engine that operates on the Carnot cycle.
A heat engine is a system that converts heat to usable energy, particularly mechanical energy, which can then be used to do mechanical work. [1] [2] While originally conceived in the context of mechanical energy, the concept of the heat engine has been applied to various other kinds of energy, particularly electrical, since at least the late 19th century.
The Carnot cycle is a cycle composed of the totally reversible processes of isentropic compression and expansion and isothermal heat addition and rejection. The thermal efficiency of a Carnot cycle depends only on the absolute temperatures of the two reservoirs in which heat transfer takes place, and for a power cycle is:
When a Carnot cycle runs in reverse, it is called a reverse Carnot cycle. A refrigerator or heat pump that acts according to the reversed Carnot cycle is called a Carnot refrigerator or Carnot heat pump, respectively. In the first stage of this cycle, the refrigerant absorbs heat isothermally from a low-temperature source, T L, in the amount Q L.
Carnot understood that the conduction of heat between bodies at different temperatures is a wasteful and irreversible process, which must be minimized if the heat engine is to achieve its maximum efficiency. Carnot cycle in a pressure vs. volume diagram. This graphical representation of Carnot's cycle was introduced by Émile Clapeyron in 1834.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
The classical Carnot heat engine. Branches. Classical; Statistical; ... diagram of an isentropic process, which is a vertical line segment ... Ideal Carnot cycle: 2→3:
The classical Carnot heat engine. Branches. Classical; ... engine is a heat engine: ... is also represented by the area enclosed by the cycle on the p–V diagram.