When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    The derivation of the NavierStokes equation involves the consideration of forces acting on fluid elements, so that a quantity called the stress tensor appears naturally in the Cauchy momentum equation. Since the divergence of this tensor is taken, it is customary to write out the equation fully simplified, so that the original appearance of ...

  3. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/NavierStokes_equations

    The NavierStokes equations (/ n æ v ˈ j eɪ s t oʊ k s / nav-YAY STOHKS) are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades ...

  4. Direct numerical simulation - Wikipedia

    en.wikipedia.org/wiki/Direct_numerical_simulation

    A direct numerical simulation (DNS) [1] [2] is a simulation in computational fluid dynamics (CFD) in which the NavierStokes equations are numerically solved without any turbulence model. This means that the whole range of spatial and temporal scales of the turbulence must be resolved.

  5. Rayleigh problem - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_problem

    In fluid dynamics, Rayleigh problem also known as Stokes first problem is a problem of determining the flow created by a sudden movement of an infinitely long plate from rest, named after Lord Rayleigh and Sir George Stokes. This is considered as one of the simplest unsteady problems that have an exact solution for the Navier-Stokes equations.

  6. Pressure-correction method - Wikipedia

    en.wikipedia.org/wiki/Pressure-correction_method

    () then provides the governing equation for pressure computation. The idea of pressure-correction also exists in the case of variable density and high Mach numbers, although in this case there is a real physical meaning behind the coupling of dynamic pressure and velocity as arising from the continuity equation

  7. SIMPLE algorithm - Wikipedia

    en.wikipedia.org/wiki/SIMPLE_algorithm

    In computational fluid dynamics (CFD), the SIMPLE algorithm is a widely used numerical procedure to solve the NavierStokes equations. SIMPLE is an acronym for Semi-Implicit Method for Pressure Linked Equations. The SIMPLE algorithm was developed by Prof. Brian Spalding and his student Suhas Patankar at Imperial College London in the early ...

  8. Turbulence modeling - Wikipedia

    en.wikipedia.org/wiki/Turbulence_modeling

    In computational fluid dynamics, the k–omega (k–ω) turbulence model [10] is a common two-equation turbulence model that is used as a closure for the Reynolds-averaged NavierStokes equations (RANS equations). The model attempts to predict turbulence by two partial differential equations for two variables, k and ω, with the first ...

  9. Stokes problem - Wikipedia

    en.wikipedia.org/wiki/Stokes_problem

    This is considered one of the simplest unsteady problems that has an exact solution for the NavierStokes equations. [1] [2] In turbulent flow, this is still named a Stokes boundary layer, but now one has to rely on experiments, numerical simulations or approximate methods in order to obtain useful information on the flow.