Search results
Results From The WOW.Com Content Network
In the case of a single parameter, parametric equations are commonly used to express the trajectory of a moving point, in which case, the parameter is often, but not necessarily, time, and the point describes a curve, called a parametric curve. In the case of two parameters, the point describes a surface, called a parametric surface.
A lemniscate of Bernoulli and its two foci F 1 and F 2 The lemniscate of Bernoulli is the pedal curve of a rectangular hyperbola Sinusoidal spirals (r n = –1 n cos(nθ), θ = π/2) in polar coordinates and their equivalents in rectangular coordinates:
Construction of the limaçon r = 2 + cos(π – θ) with polar coordinates' origin at (x, y) = ( 1 / 2 , 0). In geometry, a limaçon or limacon / ˈ l ɪ m ə s ɒ n /, also known as a limaçon of Pascal or Pascal's Snail, is defined as a roulette curve formed by the path of a point fixed to a circle when that circle rolls around the outside of a circle of equal radius.
The unit hyperbola is a special case of the rectangular hyperbola, with a particular orientation, location, and scale. As such, its eccentricity equals 2 . {\displaystyle {\sqrt {2}}.} [ 1 ] The unit hyperbola finds applications where the circle must be replaced with the hyperbola for purposes of analytic geometry.
If a planar curve in is defined by the equation = (), where is continuously differentiable, then it is simply a special case of a parametric equation where = and = (). The Euclidean distance of each infinitesimal segment of the arc can be given by:
Cissoid of Diocles traced by points M with ¯ = ¯ Animation visualizing the Cissoid of Diocles. In geometry, the cissoid of Diocles (from Ancient Greek κισσοειδής (kissoeidēs) 'ivy-shaped'; named for Diocles) is a cubic plane curve notable for the property that it can be used to construct two mean proportionals to a given ratio.
Bessel functions describe the radial part of vibrations of a circular membrane.. Bessel functions, named after Friedrich Bessel who was the first to systematically study them in 1824, [1] are canonical solutions y(x) of Bessel's differential equation + + = for an arbitrary complex number, which represents the order of the Bessel function.
In mathematics, and more specifically in geometry, parametrization (or parameterization; also parameterisation, parametrisation) is the process of finding parametric equations of a curve, a surface, or, more generally, a manifold or a variety, defined by an implicit equation. The inverse process is called implicitization. [1] "