Search results
Results From The WOW.Com Content Network
In special relativity, an object that has nonzero rest mass cannot travel at the speed of light. As the object approaches the speed of light, the object's energy and momentum increase without bound. In the first years after 1905, following Lorentz and Einstein, the terms longitudinal and transverse mass were still in use.
The speed of light in a locale is always equal to c according to the observer who is there. That is, every infinitesimal region of spacetime may be assigned its own proper time, and the speed of light according to the proper time at that region is always c. This is the case whether or not a given region is occupied by an observer.
The Bondi mass was introduced (Bondi, 1962) in a paper that studied the loss of mass of physical systems via gravitational radiation. The Bondi mass is also associated with a group of asymptotic symmetries, the BMS group at null infinity. Like the SPI group at spatial infinity, the BMS group at null infinity is infinite-dimensional, and it also ...
In gravitationally bound systems, the orbital speed of an astronomical body or object (e.g. planet, moon, artificial satellite, spacecraft, or star) is the speed at which it orbits around either the barycenter (the combined center of mass) or, if one body is much more massive than the other bodies of the system combined, its speed relative to the center of mass of the most massive body.
The effect of a finite speed of gravity goes to zero as c goes to infinity, but not as 1/c 2 as it does in modern theories. This led Laplace to conclude that the speed of gravitational interactions is at least 7 × 10 6 times the speed of light.
As an approximate threshold, time dilation may become important when an object approaches speeds on the order of 30,000 km/s (1/10 the speed of light). [ 29 ] Hyperbolic motion
Mass–energy equivalence states that all objects having mass, or massive objects, have a corresponding intrinsic energy, even when they are stationary.In the rest frame of an object, where by definition it is motionless and so has no momentum, the mass and energy are equal or they differ only by a constant factor, the speed of light squared (c 2).
For artificial satellites and small natural objects, the mass of the object makes a negligible contribution to the combined mass, and so is often ignored. Escape speed varies with distance from the center of the primary body, as does the velocity of an object traveling under the gravitational influence of the primary. If an object is in a ...