Search results
Results From The WOW.Com Content Network
Data mining in general and rule induction in detail are trying to create algorithms without human programming but with analyzing existing data structures. [ 1 ] : 415- In the easiest case, a rule is expressed with “if-then statements” and was created with the ID3 algorithm for decision tree learning.
Rule-based machine learning (RBML) is a term in computer science intended to encompass any machine learning method that identifies, learns, or evolves 'rules' to store, manipulate or apply. [ 1 ] [ 2 ] [ 3 ] The defining characteristic of a rule-based machine learner is the identification and utilization of a set of relational rules that ...
Relief algorithm: Selection of nearest hit, and nearest miss instance neighbors prior to scoring. Take a data set with n instances of p features, belonging to two known classes. Within the data set, each feature should be scaled to the interval [0 1] (binary data should remain as 0 and 1). The algorithm will be repeated m times.
In machine learning, Littlestone and Warmuth generalized the winnow algorithm to the weighted majority algorithm. [11] Later, Freund and Schapire generalized it in the form of hedge algorithm. [12] AdaBoost Algorithm formulated by Yoav Freund and Robert Schapire also employed the Multiplicative Weight Update Method. [1]
The goal of any supervised learning algorithm is to find a function that best maps a set of inputs to their correct output. The motivation for backpropagation is to train a multi-layered neural network such that it can learn the appropriate internal representations to allow it to learn any arbitrary mapping of input to output.
Help; Learn to edit; Community portal; Recent changes; Upload file; Special pages
In 2011, authors of the Weka machine learning software described the C4.5 algorithm as "a landmark decision tree program that is probably the machine learning workhorse most widely used in practice to date". [2] It became quite popular after ranking #1 in the Top 10 Algorithms in Data Mining pre-eminent paper published by Springer LNCS in 2008. [3]
Co-training is a machine learning algorithm used when there are only small amounts of labeled data and large amounts of unlabeled data. One of its uses is in text mining for search engines . It was introduced by Avrim Blum and Tom Mitchell in 1998.