Search results
Results From The WOW.Com Content Network
The concept of almost sure convergence does not come from a topology on the space of random variables. This means there is no topology on the space of random variables such that the almost surely convergent sequences are exactly the converging sequences with respect to that topology. In particular, there is no metric of almost sure convergence.
It is equivalent to check condition (iii) for the series = = = (′) where for each , and ′ are IID—that is, to employ the assumption that [] =, since is a sequence of random variables bounded by 2, converging almost surely, and with () = ().
Convergence in probability does not imply almost sure convergence in the discrete case [ edit ] If X n are independent random variables assuming value one with probability 1/ n and zero otherwise, then X n converges to zero in probability but not almost surely.
Convergence of random variables, for "almost sure convergence" With high probability; Cromwell's rule, which says that probabilities should almost never be set as zero or one; Degenerate distribution, for "almost surely constant" Infinite monkey theorem, a theorem using the aforementioned terms; List of mathematical jargon
Law 3 is called the strong law because random variables which converge strongly (almost surely) are guaranteed to converge weakly (in probability). However the weak law is known to hold in certain conditions where the strong law does not hold and then the convergence is only weak (in probability).
The order in probability notation is used in probability theory and statistical theory in direct parallel to the big O notation that is standard in mathematics.Where the big O notation deals with the convergence of sequences or sets of ordinary numbers, the order in probability notation deals with convergence of sets of random variables, where convergence is in the sense of convergence in ...
Then the sequence converges almost surely to a random variable with finite expectation. There is a symmetric statement for submartingales with bounded expectation of the positive part. A supermartingale is a stochastic analogue of a non-increasing sequence, and the condition of the theorem is analogous to the condition in the monotone ...
Given a discrete-time stationary ergodic stochastic process on the probability space (,,), the asymptotic equipartition property is an assertion that, almost surely, (,, …,) where () or simply denotes the entropy rate of , which must exist for all discrete-time stationary processes including the ergodic ones.