Search results
Results From The WOW.Com Content Network
The classical example of a discrete spectrum (for which the term was first used) is the characteristic set of discrete spectral lines seen in the emission spectrum and absorption spectrum of isolated atoms of a chemical element, which only absorb and emit light at particular wavelengths. The technique of spectroscopy is based on this phenomenon.
The infrared absorption spectrum of NASA laboratory sulfur dioxide ice is compared with the infrared absorption spectra of ices on Jupiter's moon, Io credit NASA, Bernard Schmitt, and UKIRT. Absorption spectroscopy is useful in chemical analysis [5] because of its specificity and its quantitative nature. The specificity of absorption spectra ...
Absorption spectrum with absorption lines A spectral line is a weaker or stronger region in an otherwise uniform and continuous spectrum . It may result from emission or absorption of light in a narrow frequency range, compared with the nearby frequencies.
In spectroscopy, an absorption band is a range of wavelengths, frequencies or energies in the electromagnetic spectrum that are characteristic of a particular transition from initial to final state in a substance. According to quantum mechanics, atoms and molecules can only hold certain defined quantities of energy, or exist in specific states. [1]
Emission lines and absorption lines compared to a continuous spectrum. In atomic, molecular, and optical physics, the Einstein coefficients are quantities describing the probability of absorption or emission of a photon by an atom or molecule. [1]
The radiation is not monochromatic, i.e., it does not consist of only a single frequency, but comprises a continuous spectrum of photon energies, its characteristic spectrum. If the radiating body and its surface are in thermodynamic equilibrium and the surface has perfect absorptivity at all wavelengths, it is characterized as a black body. A ...
The light from a source can consist of a continuous spectrum, an emission spectrum (bright lines), or an absorption spectrum (dark lines). Because each element leaves its spectral signature in the pattern of lines observed, a spectral analysis can reveal the composition of the object being analyzed. [2]
The spectrum of T restricted to H ac is called the absolutely continuous spectrum of T, σ ac (T). The spectrum of T restricted to H sc is called its singular spectrum, σ sc (T). The set of eigenvalues of T is called the pure point spectrum of T, σ pp (T). The closure of the eigenvalues is the spectrum of T restricted to H pp.