When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Emission spectrum - Wikipedia

    en.wikipedia.org/wiki/Emission_spectrum

    The emission spectrum of a chemical element or chemical compound is the spectrum of frequencies of electromagnetic radiation emitted due to electrons making a transition from a high energy state to a lower energy state.

  3. Spectrum (physical sciences) - Wikipedia

    en.wikipedia.org/wiki/Spectrum_(physical_sciences)

    The classical example of a discrete spectrum (for which the term was first used) is the characteristic set of discrete spectral lines seen in the emission spectrum and absorption spectrum of isolated atoms of a chemical element, which only absorb and emit light at particular wavelengths. The technique of spectroscopy is based on this phenomenon.

  4. Hydrogen spectral series - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_spectral_series

    The emission spectrum of atomic hydrogen has been divided into a number of spectral series, with wavelengths given by the Rydberg formula. These observed spectral lines are due to the electron making transitions between two energy levels in an atom.

  5. Electromagnetic radiation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_radiation

    An example is the emission spectrum of nebulae. [38] Rapidly moving electrons are most sharply accelerated when they encounter a region of force, so they are responsible for producing much of the highest frequency electromagnetic radiation observed in nature.

  6. Atomic emission spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Atomic_emission_spectroscopy

    Atomic emission spectroscopy (AES) is a method of chemical analysis that uses the intensity of light emitted from a flame, plasma, arc, or spark at a particular wavelength to determine the quantity of an element in a sample.

  7. Spectral line - Wikipedia

    en.wikipedia.org/wiki/Spectral_line

    A spectral line may be observed either as an emission line or an absorption line. Which type of line is observed depends on the type of material and its temperature relative to another emission source. An absorption line is produced when photons from a hot, broad spectrum source pass through a cooler material.

  8. Black-body radiation - Wikipedia

    en.wikipedia.org/wiki/Black-body_radiation

    As the object increases in temperature to about 500 °C (773 K; 932 °F), the emission spectrum gets stronger and extends into the human visual range, and the object appears dull red. As its temperature increases further, it emits more and more orange, yellow, green, and then blue light (and ultimately beyond violet, ultraviolet).

  9. Planck's law - Wikipedia

    en.wikipedia.org/wiki/Planck's_law

    The "mass emission coefficient" j ν is equal to the radiance per unit volume of a small volume element divided by its mass (since, as for the mass absorption coefficient, the emission is proportional to the emitting mass) and has units of power⋅solid angle −1 ⋅frequency −1 ⋅density −1. Like the mass absorption coefficient, it too ...