Search results
Results From The WOW.Com Content Network
MT-ATP8 (or ATP8) is a mitochondrial gene with the full name 'mitochondrially encoded ATP synthase membrane subunit 8' that encodes a subunit of mitochondrial ATP synthase, ATP synthase F o subunit 8 (or subunit A6L). This subunit belongs to the F o complex of the large, transmembrane F-type ATP synthase. [5]
The structure of the intact ATP synthase is currently known at low-resolution from electron cryo-microscopy (cryo-EM) studies of the complex. The cryo-EM model of ATP synthase suggests that the peripheral stalk is a flexible structure that wraps around the complex as it joins F 1 to F O.
The 10 TMS proteins appear to have two extra TMSs between the two 4 TMS repeat units. [98] Most uptake systems (all except 3.A.1.21) are of the ABC2 type, divided into type I and type II by the way they handle nucleotides. A special subfamily of ABC2 importers called ECF use a separate subunit for substrate recognition. [99]
In eukaryotes, this structure involves DNA binding to a complex of small basic proteins called histones, while in prokaryotes multiple types of proteins are involved. [ 116 ] [ 117 ] The histones form a disk-shaped complex called a nucleosome , which contains two complete turns of double-stranded DNA wrapped around its surface.
The primary structure of a biopolymer is the exact specification of its atomic composition and the chemical bonds connecting those atoms (including stereochemistry).For a typical unbranched, un-crosslinked biopolymer (such as a molecule of a typical intracellular protein, or of DNA or RNA), the primary structure is equivalent to specifying the sequence of its monomeric subunits, such as amino ...
Structure of a flippase, showing the two major subunits of the enzyme. Flippases are transmembrane lipid transporter proteins located in the cell membrane.They are responsible for aiding the movement of phospholipid molecules between the two layers, or leaflets, that compose the membrane (transverse diffusion, also known as a "flip-flop" transition).
α/β proteins are a class of structural domains in which the secondary structure is composed of alternating α-helices and β-strands along the backbone. The β-strands are therefore mostly parallel. [4] Common examples include the flavodoxin fold, the TIM barrel and leucine-rich-repeat (LRR) proteins such as ribonuclease inhibitor.
The α subunit is close to the subunit b 2 and makes up the stalk that connects the transmembrane subunits to the α3β3 and δ subunits. F-ATP synthases are identical in appearance and function except for the mitochondrial F 0 F 1 -ATP synthase, which contains 7-9 additional subunits.