Search results
Results From The WOW.Com Content Network
MT-ATP8 (or ATP8) is a mitochondrial gene with the full name 'mitochondrially encoded ATP synthase membrane subunit 8' that encodes a subunit of mitochondrial ATP synthase, ATP synthase F o subunit 8 (or subunit A6L). This subunit belongs to the F o complex of the large, transmembrane F-type ATP synthase. [5]
The structure of the intact ATP synthase is currently known at low-resolution from electron cryo-microscopy (cryo-EM) studies of the complex. The cryo-EM model of ATP synthase suggests that the peripheral stalk is a flexible structure that wraps around the complex as it joins F 1 to F O.
A-ATPases (A1Ao ATPases) are found in Archaea and function like F-ATPases. T3SS / flagellum ATPases, which are homologous to both parts of the A/F/V rotary ATPases: strongly in the "1" part, and weakly in the "O" part. [5] Ring-shaped DNA helicases like the Rho factor, where the ring is homologus to the α/β subunits. [6]
Lipid A is an endotoxin and so loss of MsbA from the cell membrane or mutations that disrupt transport results in the accumulation of lipid A in the inner cell membrane resulting to cell death. It is a close bacterial homolog of P-glycoprotein (Pgp) by protein sequence homology and has overlapping substrate specificities with the MDR-ABC ...
The double-stranded structure of DNA provides a simple mechanism for DNA replication. Here, the two strands are separated and then each strand's complementary DNA sequence is recreated by an enzyme called DNA polymerase. This enzyme makes the complementary strand by finding the correct base through complementary base pairing and bonding it onto ...
This nucleotide contains the five-carbon sugar deoxyribose (at center), a nucleobase called adenine (upper right), and one phosphate group (left). The deoxyribose sugar joined only to the nitrogenous base forms a Deoxyribonucleoside called deoxyadenosine, whereas the whole structure along with the phosphate group is a nucleotide, a constituent of DNA with the name deoxyadenosine monophosphate.
Structure of a flippase, showing the two major subunits of the enzyme. Flippases are transmembrane lipid transporter proteins located in the cell membrane.They are responsible for aiding the movement of phospholipid molecules between the two layers, or leaflets, that compose the membrane (transverse diffusion, also known as a "flip-flop" transition).
The human MT-ATP6 gene, located in mitochondrial DNA, is 681 base pairs in length. [7] An unusual feature of MT-ATP6 is the 46-nucleotide gene overlap of its first codons with the end of the MT-ATP8 gene. With respect to the MT-ATP6 reading frame (+3), the MT-ATP8 gene ends in the +1 reading frame with a TAG stop codon.