Search results
Results From The WOW.Com Content Network
Within an unstable layer in the troposphere, the lifting of air parcels will occur, and continue for as long as the nearby atmosphere remains unstable. Once overturning through the depth of the troposphere occurs (with convection being capped by the relatively warmer, more stable layer of the stratosphere ), deep convective currents lead to ...
This makes moist air generally less stable than dry air (see convective available potential energy [CAPE]). The dry adiabatic lapse rate (for unsaturated air) is 3 °C (5.4 °F) per 1,000 vertical feet (300 m). The moist adiabatic lapse rate varies from 1.1 to 2.8 °C (2.0 to 5.0 °F) per 1,000 vertical feet (300 m).
Unstable areas are in yellow (slightly) and red (highly) while the stable zone is in blue. The lifted index (LI) is the temperature difference between the environment Te(p) and an air parcel lifted adiabatically Tp(p) at a given pressure height in the troposphere (lowest layer where most weather occurs) of the atmosphere, usually 500 hPa . The ...
Stable stratification of fluids occurs when each layer is less dense than the one below it. Unstable stratification is when each layer is denser than the one below it. Buoyancy forces tend to preserve stable stratification; the higher layers float on the lower ones. In unstable stratification, on the other hand, buoyancy forces cause convection ...
Cloud formation in stable air is unlikely. If the environmental lapse rate is between the moist and dry adiabatic lapse rates, the air is conditionally unstable — an unsaturated parcel of air does not have sufficient buoyancy to rise to the LCL or CCL, and it is stable to weak vertical displacements in either direction.
A ball on the top of a hill is an unstable situation. In dynamical systems instability means that some of the outputs or internal states increase with time, without bounds. [1] Not all systems that are not stable are unstable; systems can also be marginally stable or exhibit limit cycle behavior.
A warmer air mass moving over a cooler one can "shut off" any convection which may be present in the cooler air mass: this is known as a capping inversion. However, if this cap is broken, either by extreme convection overcoming the cap or by the lifting effect of a front or a mountain range, the sudden release of bottled-up convective energy ...
It has three branches: an upper branch in which the flame is burning vigorously, i.e., it is "stable"; a middle branch in which the flame is "unstable" (the probability for solutions of the reactor-model equations to be in this unstable branch is small); and a lower branch in which there is no flame but a cold fuel-oxidizer mixture.