Search results
Results From The WOW.Com Content Network
In mathematics and statistics, a quantitative variable may be continuous or discrete if it is typically obtained by measuring or counting, respectively. [1] If it can take on two particular real values such that it can also take on all real values between them (including values that are arbitrarily or infinitesimally close together), the variable is continuous in that interval. [2]
That is, Q is absolutely continuous with respect to P if the support of Q is a subset of the support of P, except in cases where this is false, including, e.g., a measure that concentrates on an open set, because its support is a closed set and it assigns measure zero to the boundary, and so another measure may concentrate on the boundary and ...
An absolutely continuous random variable is a random variable whose probability distribution is absolutely continuous. There are many examples of absolutely continuous probability distributions: normal , uniform , chi-squared , and others .
In probability theory and statistics, the continuous uniform distributions or rectangular distributions are a family of symmetric probability distributions.Such a distribution describes an experiment where there is an arbitrary outcome that lies between certain bounds. [1]
The Dirac delta function, although not strictly a probability distribution, is a limiting form of many continuous probability functions. It represents a discrete probability distribution concentrated at 0 — a degenerate distribution — it is a Distribution (mathematics) in the generalized function sense; but the notation treats it as if it ...
Furthermore, it covers distributions that are neither discrete nor continuous nor mixtures of the two. An example of such distributions could be a mix of discrete and continuous distributions—for example, a random variable that is 0 with probability 1/2, and takes a random value from a normal distribution with probability 1/2.
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
The continuous mapping theorem states that for a continuous function g, if the sequence {X n} converges in distribution to X, then {g(X n)} converges in distribution to g(X). Note however that convergence in distribution of { X n } to X and { Y n } to Y does in general not imply convergence in distribution of { X n + Y n } to X + Y or of { X n ...