Search results
Results From The WOW.Com Content Network
The linear dependency of a sequence of vectors does not depend of the order of the terms in the sequence. This allows defining linear independence for a finite set of vectors: A finite set of vectors is linearly independent if the sequence obtained by ordering them is linearly independent. In other words, one has the following result that is ...
In three-dimensional Euclidean space, these three planes represent solutions to linear equations, and their intersection represents the set of common solutions: in this case, a unique point. The blue line is the common solution to two of these equations. Linear algebra is the branch of mathematics concerning linear equations such as:
Let T be a complete L-theory.An L-formula φ(x,y) is said to have the independence property (with respect to x, y) if in every model M of T there is, for each n = {0,1,...,n − 1} < ω, a family of tuples b 0,...,b n−1 such that for each of the 2 n subsets X of n there is a tuple a in M for which
An important application is to compute linear independence: a set of vectors are linearly independent if and only if the Gram determinant (the determinant of the Gram matrix) is non-zero. It is named after Jørgen Pedersen Gram.
linear form A linear map from a vector space to its field of scalars [8] linear independence Property of being not linearly dependent. [9] linear map A function between vector space s which respects addition and scalar multiplication. linear transformation A linear map whose domain and codomain are equal; it is generally supposed to be invertible.
In the mathematical theory of matroids, a matroid representation is a family of vectors whose linear independence relation is the same as that of a given matroid. Matroid representations are analogous to group representations; both types of representation provide abstract algebraic structures (matroids and groups respectively) with concrete descriptions in terms of linear algebra.
In combinatorics, a matroid / ˈ m eɪ t r ɔɪ d / is a structure that abstracts and generalizes the notion of linear independence in vector spaces.There are many equivalent ways to define a matroid axiomatically, the most significant being in terms of: independent sets; bases or circuits; rank functions; closure operators; and closed sets or flats.
The concepts of dependence and independence of systems are partially generalized in numerical linear algebra by the condition number, which (roughly) measures how close a system of equations is to being dependent (a condition number of infinity is a dependent system, and a system of orthogonal equations is maximally independent and has a ...