When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Speed of sound - Wikipedia

    en.wikipedia.org/wiki/Speed_of_sound

    However, the speed of sound varies from substance to substance: typically, sound travels most slowly in gases, faster in liquids, and fastest in solids. For example, while sound travels at 343 m/s in air, it travels at 1481 m/s in water (almost 4.3 times as fast) and at 5120 m/s in iron (almost 15 times as fast).

  3. Time dilation - Wikipedia

    en.wikipedia.org/wiki/Time_dilation

    For example, one year of travel might correspond to ten years on Earth. Indeed, a constant 1 g acceleration would permit humans to travel through the entire known Universe in one human lifetime. [10] With current technology severely limiting the velocity of space travel, the differences experienced in practice are minuscule.

  4. Sound - Wikipedia

    en.wikipedia.org/wiki/Sound

    When sound is moving through a medium that does not have constant physical properties, it may be refracted (either dispersed or focused). [5] Spherical compression (longitudinal) waves. The mechanical vibrations that can be interpreted as sound can travel through all forms of matter: gases, liquids, solids, and plasmas.

  5. Faster-than-light - Wikipedia

    en.wikipedia.org/wiki/Faster-than-light

    The uncertainty principle implies that individual photons may travel for short distances at speeds somewhat faster (or slower) than c, even in vacuum; this possibility must be taken into account when enumerating Feynman diagrams for a particle interaction. [24] However, it was shown in 2011 that a single photon may not travel faster than c. [25]

  6. Speeds of sound of the elements - Wikipedia

    en.wikipedia.org/wiki/Speeds_of_sound_of_the...

    The speed of sound in any chemical element in the fluid phase has one temperature-dependent value. In the solid phase, different types of sound wave may be propagated, each with its own speed: among these types of wave are longitudinal (as in fluids), transversal, and (along a surface or plate) extensional. [1]

  7. Underwater acoustics - Wikipedia

    en.wikipedia.org/wiki/Underwater_acoustics

    The speed of sound (i.e., the longitudinal motion of wavefronts) is related to frequency and wavelength of a wave by =.. This is different from the particle velocity , which refers to the motion of molecules in the medium due to the sound, and relates to the plane wave pressure to the fluid density and sound speed by =.

  8. Upgrade to a faster, more secure version of a supported browser. It's free and it only takes a few moments:

  9. Stokes's law of sound attenuation - Wikipedia

    en.wikipedia.org/wiki/Stokes's_law_of_sound...

    In acoustics, Stokes's law of sound attenuation is a formula for the attenuation of sound in a Newtonian fluid, such as water or air, due to the fluid's viscosity.It states that the amplitude of a plane wave decreases exponentially with distance traveled, at a rate α given by = where η is the dynamic viscosity coefficient of the fluid, ω is the sound's angular frequency, ρ is the fluid ...