Search results
Results From The WOW.Com Content Network
At least 3,300 nuclides have been experimentally characterized [1] (see List of radioactive nuclides by half-life for the nuclides with decay half-lives less than one hour). A nuclide is defined conventionally as an experimentally examined bound collection of protons and neutrons that either is stable or has an observed decay mode.
A table or chart of nuclides is a two-dimensional graph of isotopes of the elements, in which one axis represents the number of neutrons (symbol N) and the other represents the number of protons (atomic number, symbol Z) in the atomic nucleus. Each point plotted on the graph thus represents a nuclide of a known or hypothetical chemical element.
Likewise, nuclides with the same neutron excess (N − Z) are called isodiaphers. [4] The name isotone was derived from the name isotope to emphasize that in the first group of nuclides it is the number of neutrons (n) that is constant, whereas in the second the number of protons (p). [5]
Interactive Chart of Nuclides (Brookhaven National Laboratory) The Lund/LBNL Nuclear Data Search; An isotope table with clickable information on every isotope and its decay routes is available at chemlab.pc.maricopa.edu; An example of free Universal Nuclide Chart with decay information for over 3000 nuclides is available at Nucleonica.net.
Elementary particles are particles with no measurable internal structure; that is, it is unknown whether they are composed of other particles. [1] They are the fundamental objects of quantum field theory. Many families and sub-families of elementary particles exist. Elementary particles are classified according to their spin.
This is a list of radioactive nuclides (sometimes also called isotopes), ordered by half-life from shortest to longest, in seconds, minutes, hours, days and years. Current methods make it difficult to measure half-lives between approximately 10 −19 and 10 −10 seconds.
The atomic nucleus is a quantum n-body system. The internal motion of nucleons within the nucleus is non-relativistic, and their behavior is governed by the Schrödinger equation. Nucleons are considered to be pointlike, without any internal structure.
Stable even–even nuclides number as many as three isobars for some mass numbers, and up to seven isotopes for some atomic numbers. Conversely, of the 251 known stable nuclides, only five have both an odd number of protons and odd number of neutrons: hydrogen-2 , lithium-6, boron-10, nitrogen-14, and tantalum-180m.