When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hamiltonian path - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path

    A Hamiltonian cycle around a network of six vertices Examples of Hamiltonian cycles on a square grid graph 8x8. In the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path in an undirected or directed graph that visits each vertex exactly once.

  3. Hamiltonian path problem - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path_problem

    If so, the route is a Hamiltonian cycle. The Hamiltonian path problem and the Hamiltonian cycle problem belong to the class of NP-complete problems, as shown in Michael Garey and David S. Johnson's book Computers and Intractability: A Guide to the Theory of NP-Completeness and Richard Karp's list of 21 NP-complete problems. [2] [3]

  4. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    Examples include biological or social networks, which contain hundreds, thousands and even billions of nodes in some cases (e.g. Facebook or LinkedIn). 1-planarity [1] 3-dimensional matching [2] [3]: SP1 Bandwidth problem [3]: GT40 Bipartite dimension [3]: GT18 Capacitated minimum spanning tree [3]: ND5

  5. Lovász conjecture - Wikipedia

    en.wikipedia.org/wiki/Lovász_conjecture

    Another version of Lovász conjecture states that . Every finite connected vertex-transitive graph contains a Hamiltonian cycle except the five known counterexamples.. There are 5 known examples of vertex-transitive graphs with no Hamiltonian cycles (but with Hamiltonian paths): the complete graph, the Petersen graph, the Coxeter graph and two graphs derived from the Petersen and Coxeter ...

  6. Travelling salesman problem - Wikipedia

    en.wikipedia.org/wiki/Travelling_salesman_problem

    Another related problem is the bottleneck travelling salesman problem: Find a Hamiltonian cycle in a weighted graph with the minimal weight of the weightiest edge. A real-world example is avoiding narrow streets with big buses. [15] The problem is of considerable practical importance, apart from evident transportation and logistics areas.

  7. Ore's theorem - Wikipedia

    en.wikipedia.org/wiki/Ore's_theorem

    Illustration for the proof of Ore's theorem. In a graph with the Hamiltonian path v 1...v n but no Hamiltonian cycle, at most one of the two edges v 1 v i and v i − 1 v n (shown as blue dashed curves) can exist. For, if they both exist, then adding them to the path and removing the (red) edge v i − 1 v i would produce a Hamiltonian cycle.

  8. Tournament (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Tournament_(graph_theory)

    Another basic result on tournaments is that every strongly connected tournament has a Hamiltonian cycle. [7] More strongly, every strongly connected tournament is vertex pancyclic : for each vertex v {\displaystyle v} , and each k {\displaystyle k} in the range from three to the number of vertices in the tournament, there is a cycle of length k ...

  9. Hamiltonian completion - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_completion

    The Hamiltonian completion problem is to find the minimal number of edges to add to a graph to make it Hamiltonian. The problem is clearly NP-hard in the general case (since its solution gives an answer to the NP-complete problem of determining whether a given graph has a Hamiltonian cycle ).