Search results
Results From The WOW.Com Content Network
A Lyapunov function for an autonomous dynamical system {: ˙ = ()with an equilibrium point at = is a scalar function: that is continuous, has continuous first derivatives, is strictly positive for , and for which the time derivative ˙ = is non positive (these conditions are required on some region containing the origin).
The ordinary Lyapunov function is used to test whether a dynamical system is (Lyapunov) stable or (more restrictively) asymptotically stable. Lyapunov stability means that if the system starts in a state x ≠ 0 {\displaystyle x\neq 0} in some domain D , then the state will remain in D for all time.
A Lyapunov function is a nonnegative scalar measure of this multi-dimensional state. Typically, the function is defined to grow large when the system moves towards undesirable states. System stability is achieved by taking control actions that make the Lyapunov function drift in the negative direction towards zero.
So our candidate Lyapunov function is a true Lyapunov function, and our system is stable under this control law (which corresponds the control law because ˙). Using the variables from the original coordinate system, the equivalent Lyapunov function
The first method developed the solution in a series which was then proved convergent within limits. The second method, which is now referred to as the Lyapunov stability criterion or the Direct Method, makes use of a Lyapunov function V(x) which has an analogy to the potential
It can be easily proved, [13] that if is an iISS-Lyapunov function with , then is actually an ISS-Lyapunov function for a system . This shows in particular, that every ISS system is integral ISS. The converse implication is not true, as the following example shows.
The Lyapunov equation, named after the Russian mathematician Aleksandr Lyapunov, is a matrix equation used in the stability analysis of linear dynamical systems. [ 1 ] [ 2 ] In particular, the discrete-time Lyapunov equation (also known as Stein equation ) for X {\displaystyle X} is
I changed the following: - "Lypaunov functions can be used to prove the stability or instability of fixed points in dynamical systems and autonomous differential equations." This is wrong, a Lyapunov function by definition proves the stability of a certain equilibrium. Otherwise it is a Lyapunov candidate funciton.