When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lyman-alpha - Wikipedia

    en.wikipedia.org/wiki/Lyman-alpha

    Lyman-alpha, typically denoted by Ly-α, is a spectral line of hydrogen (or, more generally, of any one-electron atom) in the Lyman series.It is emitted when the atomic electron transitions from an n = 2 orbital to the ground state (n = 1), where n is the principal quantum number.

  3. Electron gun - Wikipedia

    en.wikipedia.org/wiki/Electron_gun

    Electron gun from an oscilloscope CRT Setup of an electron gun. 1. Hot cathode.2. Wehnelt cylinder.3. Anode. A direct current, electrostatic thermionic electron gun is formed from several parts: a hot cathode, which is heated to create a stream of electrons via thermionic emission; electrodes generating an electric field to focus the electron beam (such as a Wehnelt cylinder); and one or more ...

  4. Wouthuysen–Field coupling - Wikipedia

    en.wikipedia.org/wiki/Wouthuysen–Field_coupling

    Wouthuysen–Field coupling is a mechanism that couples the spin temperature of neutral hydrogen to Lyman-alpha radiation, which decouples the neutral hydrogen from the CMB. The energy of the Lyman-alpha transition is 10.2 eV—this energy is approximately two million times greater than the hydrogen line, and is produced by astrophysical ...

  5. Lyman series - Wikipedia

    en.wikipedia.org/wiki/Lyman_series

    The transitions are named sequentially by Greek letters: from n = 2 to n = 1 is called Lyman-alpha, 3 to 1 is Lyman-beta, 4 to 1 is Lyman-gamma, and so on. The series is named after its discoverer, Theodore Lyman. The greater the difference in the principal quantum numbers, the higher the energy of the electromagnetic emission.

  6. Hydrogen spectral series - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_spectral_series

    In the Bohr model, the Lyman series includes the lines emitted by transitions of the electron from an outer orbit of quantum number n > 1 to the 1st orbit of quantum number n' = 1. The series is named after its discoverer, Theodore Lyman, who discovered the spectral lines from 1906–1914.

  7. Gunn–Peterson trough - Wikipedia

    en.wikipedia.org/wiki/Gunn–Peterson_trough

    The trough is characterized by suppression of electromagnetic emission from the source at wavelengths less than that of the Lyman-alpha line at the redshift of the emitted light. This effect was originally predicted in 1965 by James E. Gunn and Bruce Peterson , [ 1 ] and independently by Peter Scheuer .

  8. Lyman-alpha forest - Wikipedia

    en.wikipedia.org/wiki/Lyman-alpha_forest

    The Lyman-alpha forest was first discovered in 1970 by astronomer Roger Lynds in an observation of the quasar 4C 05.34. [1] Quasar 4C 05.34 was the farthest object observed to that date, and Lynds noted an unusually large number of absorption lines in its spectrum and suggested that most of the absorption lines were all due to the same Lyman-alpha transition. [2]

  9. Characteristic X-ray - Wikipedia

    en.wikipedia.org/wiki/Characteristic_X-ray

    This choice also places K-alpha firmly in the X-ray energy range. Similarly to Lyman-alpha, the K-alpha emission is composed of two spectral lines, K-alpha 1 (Kα 1) and K-alpha 2 (Kα 2). [6] The K-alpha 1 emission is slightly higher in energy (and, thus, has a lower wavelength) than the K-alpha 2 emission.