Search results
Results From The WOW.Com Content Network
The 5% Value at Risk of a hypothetical profit-and-loss probability density function. Value at risk (VaR) is a measure of the risk of loss of investment/capital.It estimates how much a set of investments might lose (with a given probability), given normal market conditions, in a set time period such as a day.
In financial mathematics, tail value at risk (TVaR), also known as tail conditional expectation (TCE) or conditional tail expectation (CTE), is a risk measure associated with the more general value at risk. It quantifies the expected value of the loss given that an event outside a given probability level has occurred.
Many risk measures have hitherto been proposed, each having certain characteristics. The entropic value at risk (EVaR) is a coherent risk measure introduced by Ahmadi-Javid, [1] [2] which is an upper bound for the value at risk (VaR) and the conditional value at risk (CVaR), obtained from the Chernoff inequality.
Expected shortfall is considered a more useful risk measure than VaR because it is a coherent spectral measure of financial portfolio risk. It is calculated for a given quantile -level q {\displaystyle q} and is defined to be the mean loss of portfolio value given that a loss is occurring at or below the q {\displaystyle q} -quantile.
However, in this case the value at risk becomes equivalent to a mean-variance approach where the risk of a portfolio is measured by the variance of the portfolio's return. The Wang transform function (distortion function) for the Value at Risk is g ( x ) = 1 x ≥ 1 − α {\displaystyle g(x)=\mathbf {1} _{x\geq 1-\alpha }} .
Risk-adjusted return on capital (RAROC) is a risk-based profitability measurement framework for analysing risk-adjusted financial performance and providing a consistent view of profitability across businesses. The concept was developed by Bankers Trust and principal designer Dan Borge in the late 1970s. [1]
A generalized version of the Walter model (1956), [6] SPM considers the effects of dividends, earnings growth, as well as the risk profile of a firm on a stock's value. Derived from the compound interest formula using the present value of a perpetuity equation, SPM is an alternative to the Gordon Growth Model. The variables are:
Then H* = (Value of H according to Monte Carlo) + B*[(Value of I analytically) − (Value of I according to same Monte Carlo paths)] is a better estimate, where B is covar(H,I)/var(H). The intuition behind that technique, when applied to derivatives, is the following: note that the source of the variance of a derivative will be directly ...