Search results
Results From The WOW.Com Content Network
Hard X-rays have shorter wavelengths than soft X-rays and as they can pass through many substances with little absorption, they can be used to 'see through' objects with 'thicknesses' less than that equivalent to a few meters of water. One notable use is diagnostic X-ray imaging in medicine (a process known as radiography). X-rays are useful as ...
Natural color X-ray photogram of a wine scene. Note the edges of hollow cylinders as compared to the solid candle. William Coolidge explains medical imaging and X-rays.. An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays.
At shorter wavelengths, which correspond to higher energies, ultraviolet spectral lines include the Lyman series of hydrogen. At the much shorter wavelengths of X-rays , the lines are known as characteristic X-rays because they remain largely unchanged for a given chemical element, independent of their chemical environment.
The atomic (covalent) radii of phosphorus, sulfur, and chlorine are about 1 angstrom, while that of hydrogen is about 0.5 angstroms. Visible light has wavelengths in the range of 4000–7000 Å. In the late 19th century, spectroscopists adopted 10 −10 of a metre as a convenient unit to express the wavelengths of characteristic spectral lines ...
However, X-ray science has special terminology to describe the transition of electrons from upper to lower energy levels: traditional Siegbahn notation, or alternatively, simplified X-ray notation. In Siegbahn notation, when an electron falls from the L shell to the K shell, the X-ray radiation emitted is called a K-alpha (Kα) emission.
The glancing angle θ (see figure on the right, and note that this differs from the convention in Snell's law where θ is measured from the surface normal), the wavelength λ, and the "grating constant" d of the crystal are connected by the relation: [11]: 1026 = where is the diffraction order (= is first order, = is second order, [10]: 221 ...
Usually X-ray diffraction in spectrometers is achieved on crystals, but in Grating spectrometers, the X-rays emerging from a sample must pass a source-defining slit, then optical elements (mirrors and/or gratings) disperse them by diffraction according to their wavelength and, finally, a detector is placed at their focal points.
Anomalous X-ray scattering (MAD or SAD phasing) – the X-ray wavelength may be scanned past an absorption edge [a] of an atom, which changes the scattering in a known way. By recording full sets of reflections at three different wavelengths (far below, far above and in the middle of the absorption edge) one can solve for the substructure of ...