Search results
Results From The WOW.Com Content Network
List of conductive polymers [1] [2]; Class Abbr. Polymer Typical dopants Peak conductivity Peak emission PA: Polyacetylene: PT: Polythiophene: Iodine, bromine, Trifluoroacetic acid, propionic acid, sulfonic acids
[1] [2] [3] For example, if a 1 m 3 solid cube of material has sheet contacts on two opposite faces, and the resistance between these contacts is 1 Ω, then the resistivity of the material is 1 Ω⋅m. Electrical conductivity (or specific conductance) is the reciprocal of electrical resistivity. It represents a material's ability to conduct ...
In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in which electrons are normally present at absolute zero temperature, while the conduction band is the lowest range of vacant electronic states.
In particular, high conductivity of 0.12 S/cm was reported in perylene–iodine complex in 1954. [3] This finding indicated that organic compounds could carry current. The fact that organic semiconductors are, in principle, insulators but become semiconducting when charge carriers are injected from the electrode(s) was discovered by Kallmann ...
The conductivity of these materials are often tested by two probe method, i.e. a known potential is applied between two probes, the resulting current is measured, and resistance is calculated by using Ohm’s law. A four-probe method employs two wires on the extreme are used to supply a current and the inner two wires measure the drop in potential.
If the resistance is not constant, the previous equation cannot be called Ohm's law, but it can still be used as a definition of static/DC resistance. [4] Ohm's law is an empirical relation which accurately describes the conductivity of the vast majority of electrically conductive materials over many orders of magnitude of current.
Also called chordal or DC resistance This corresponds to the usual definition of resistance; the voltage divided by the current R s t a t i c = V I. {\displaystyle R_{\mathrm {static} }={V \over I}.} It is the slope of the line (chord) from the origin through the point on the curve. Static resistance determines the power dissipation in an electrical component. Points on the current–voltage ...
As quoted in an online version of: David R. Lide (ed), CRC Handbook of Chemistry and Physics, 84th Edition.CRC Press. Boca Raton, Florida, 2003; Section 4, Properties of the Elements and Inorganic Compounds; Physical Properties of the Rare Earth Metals