Search results
Results From The WOW.Com Content Network
For example, if A = 1 m 2, = 1 m (forming a cube with perfectly conductive contacts on opposite faces), then the resistance of this element in ohms is numerically equal to the resistivity of the material it is made of in Ω⋅m. Conductivity, σ, is the inverse of resistivity:
As quoted in an online version of: David R. Lide (ed), CRC Handbook of Chemistry and Physics, 84th Edition.CRC Press. Boca Raton, Florida, 2003; Section 4, Properties of the Elements and Inorganic Compounds; Physical Properties of the Rare Earth Metals
Also called chordal or DC resistance This corresponds to the usual definition of resistance; the voltage divided by the current R s t a t i c = V I. {\displaystyle R_{\mathrm {static} }={V \over I}.} It is the slope of the line (chord) from the origin through the point on the curve. Static resistance determines the power dissipation in an electrical component. Points on the current–voltage ...
Plot of the Wiedemann–Franz law for copper. Left axis: specific electric resistance ρ in 10 −10 Ω m, red line and specific thermal conductivity λ in W/(K m), green line. Right axis: ρ times λ in 100 U 2 /K, blue line and Lorenz number ρ λ / K in U 2 /K 2, pink line. Lorenz number is more or less constant.
A material property is an intensive property of a material, i.e., a physical property or chemical property that does not depend on the amount of the material. These quantitative properties may be used as a metric by which the benefits of one material versus another can be compared, thereby aiding in materials selection.
The ring circuits, or ring mains, used in UK homes are another example, where power is delivered to outlets at lower currents (per wire, by using two paths in parallel), thus reducing Joule heating in the wires. Joule heating does not occur in superconducting materials, as these materials have zero electrical resistance in the superconducting ...
In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in which electrons are normally present at absolute zero temperature, while the conduction band is the lowest range of vacant electronic states.
Since metals can display multiple oxidation numbers, the exact definition of how many "valence electrons" an element should have in elemental form is somewhat arbitrary, but the following table lists the free electron densities given in Ashcroft and Mermin, which were calculated using the formula above based on reasonable assumptions about ...