Search results
Results From The WOW.Com Content Network
When seeking a solution, one or more variables are designated as unknowns. A solution is an assignment of values to the unknown variables that makes the equality in the equation true. In other words, a solution is a value or a collection of values (one for each unknown) such that, when substituted for the unknowns, the equation becomes an equality.
In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the ...
Multiplying or dividing both sides of an equation by a non-zero quantity. Applying an identity to transform one side of the equation. For example, expanding a product or factoring a sum. For a system: adding to both sides of an equation the corresponding side of another equation, multiplied by the same quantity.
Goldbach’s Conjecture. One of the greatest unsolved mysteries in math is also very easy to write. Goldbach’s Conjecture is, “Every even number (greater than two) is the sum of two primes ...
Common to the class is the nature of the resulting equation, which is a linear Diophantine equation in two unknowns. Most members of the class are determinate, but some are not (the monkey and the coconuts is one of the latter). Familiar algebraic methods are unavailing for solving such equations.
The mass of some objects on the scale is unknown and represents variables. Solving an equation corresponds to adding and removing objects on both sides in such a way that the sides stay in balance until the only object remaining on one side is the object of unknown mass. [145]
In new research, mathematicians have narrowed down one of the biggest outstanding problems in math. Huge breakthroughs in math and science are usually the work of many people over many years.
The analytical method of separation of variables for solving partial differential equations has also been generalized into a computational method of decomposition in invariant structures that can be used to solve systems of partial differential equations.