Search results
Results From The WOW.Com Content Network
In numerical analysis and scientific computing, a sparse matrix or sparse array is a matrix in which most of the elements are zero. [1] There is no strict definition regarding the proportion of zero-value elements for a matrix to qualify as sparse but a common criterion is that the number of non-zero elements is roughly equal to the number of ...
For example, a 2,1 represents the element at the second row and first column of the matrix. In mathematics, a matrix (pl.: matrices) is a rectangular array or table of numbers, symbols, or expressions, with elements or entries arranged in rows and columns, which is used to represent a mathematical object or property of such an object.
A rearrangement of the entries of a banded matrix which requires less space. Sparse matrix: A matrix with relatively few non-zero elements. Sparse matrix algorithms can tackle huge sparse matrices that are utterly impractical for dense matrix algorithms. Symmetric matrix: A square matrix which is equal to its transpose, A = A T (a i,j = a j,i ...
Sparse approximation (also known as sparse representation) theory deals with sparse solutions for systems of linear equations. Techniques for finding these solutions and exploiting them in applications have found wide use in image processing , signal processing , machine learning , medical imaging , and more.
A band matrix with k 1 = k 2 = 0 is a diagonal matrix, with bandwidth 0. A band matrix with k 1 = k 2 = 1 is a tridiagonal matrix, with bandwidth 1. For k 1 = k 2 = 2 one has a pentadiagonal matrix and so on. Triangular matrices. For k 1 = 0, k 2 = n−1, one obtains the definition of an upper triangular matrix
In mathematics, the Kronecker product, sometimes denoted by ⊗, is an operation on two matrices of arbitrary size resulting in a block matrix.It is a specialization of the tensor product (which is denoted by the same symbol) from vectors to matrices and gives the matrix of the tensor product linear map with respect to a standard choice of basis.
The LU decomposition of a sparse matrix is usually not sparse, thus, for a large system of equations, LU decomposition may require a prohibitive amount of memory and number of arithmetical operations. In the preconditioned iterative methods, if the preconditioner matrix M is a good approximation of coefficient matrix A then the convergence is ...
The element stiffness matrix is zero for most values of i and j, for which the corresponding basis functions are zero within T k. The full stiffness matrix A is the sum of the element stiffness matrices. In particular, for basis functions that are only supported locally, the stiffness matrix is sparse.