When.com Web Search

  1. Ad

    related to: aspect ratio formula airfoil calculator

Search results

  1. Results From The WOW.Com Content Network
  2. Aspect ratio (aeronautics) - Wikipedia

    en.wikipedia.org/wiki/Aspect_ratio_(aeronautics)

    An ASH 31 glider with very high aspect ratio (AR=33.5) and lift-to-drag ratio (L/D=56) In aeronautics, the aspect ratio of a wing is the ratio of its span to its mean chord. It is equal to the square of the wingspan divided by the wing area. Thus, a long, narrow wing has a high aspect ratio, whereas a short, wide wing has a low aspect ratio. [1]

  3. Chord (aeronautics) - Wikipedia

    en.wikipedia.org/wiki/Chord_(aeronautics)

    The ratio of the length (or span) of a rectangular-planform wing to its chord is known as the aspect ratio, an important indicator of the lift-induced drag the wing will create. [7] (For wings with planforms that are not rectangular, the aspect ratio is calculated as the square of the span divided by the wing planform area.)

  4. Blade solidity - Wikipedia

    en.wikipedia.org/wiki/Blade_solidity

    In an airfoil, the mean line curvature is designed to change the flow direction, the vane thickness is for strength and the streamlined shape is to delay the onset of boundary layer separation. Taking all the design factors of an airfoil , the resulting forces of lift and drag can be expressed in terms of lift and drag coefficient.

  5. NACA airfoil - Wikipedia

    en.wikipedia.org/wiki/NACA_airfoil

    For example, the NACA 2412 airfoil has a maximum camber of 2% located 40% (0.4 chords) from the leading edge with a maximum thickness of 12% of the chord. The NACA 0015 airfoil is symmetrical, the 00 indicating that it has no camber. The 15 indicates that the airfoil has a 15% thickness to chord length ratio: it is 15% as thick as it is long.

  6. Thickness-to-chord ratio - Wikipedia

    en.wikipedia.org/wiki/Thickness-to-chord_ratio

    The natural outcome of this requirement is a wing design that is thin and wide, which has a low thickness-to-chord ratio. At lower speeds, undesirable parasitic drag is largely a function of the total surface area, which suggests using a wing with minimum chord, leading to the high aspect ratios seen on light aircraft and regional airliners ...

  7. Lift-to-drag ratio - Wikipedia

    en.wikipedia.org/wiki/Lift-to-drag_ratio

    In aerodynamics, the lift-to-drag ratio (or L/D ratio) is the lift generated by an aerodynamic body such as an aerofoil or aircraft, divided by the aerodynamic drag caused by moving through air. It describes the aerodynamic efficiency under given flight conditions. The L/D ratio for any given body will vary according to these flight conditions.

  8. Oswald efficiency number - Wikipedia

    en.wikipedia.org/wiki/Oswald_efficiency_number

    For conventional fixed-wing aircraft with moderate aspect ratio and sweep, Oswald efficiency number with wing flaps retracted is typically between 0.7 and 0.85. At supersonic speeds, Oswald efficiency number decreases substantially. For example, at Mach 1.2 Oswald efficiency number is likely to be between 0.3 and 0.5. [1]

  9. Nose cone design - Wikipedia

    en.wikipedia.org/wiki/Nose_cone_design

    The ratio of the length of a nose cone compared to its base diameter is known as the fineness ratio. This is sometimes also called the aspect ratio, though that term is usually applied to wings and tails. Fineness ratio is often applied to the entire vehicle, considering the overall length and diameter.