Search results
Results From The WOW.Com Content Network
Peak-to-peak amplitude (abbreviated p–p or PtP or PtoP) is the change between peak (highest amplitude value) and trough (lowest amplitude value, which can be negative). With appropriate circuitry, peak-to-peak amplitudes of electric oscillations can be measured by meters or by viewing the waveform on an oscilloscope .
In quantum mechanics, a probability amplitude is a complex number used for describing the behaviour of systems. The square of the modulus of this quantity represents a probability density . Probability amplitudes provide a relationship between the quantum state vector of a system and the results of observations of that system, a link was first ...
Different fields of application have different definitions for the term. All the meanings are very similar in concept: In chemistry, the transmission coefficient refers to a chemical reaction overcoming a potential barrier; in optics and telecommunications it is the amplitude of a wave transmitted through a medium or conductor to that of the incident wave; in quantum mechanics it is used to ...
The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...
The Gaussian function has a 1/e 2 diameter (2w as used in the text) about 1.7 times the FWHM.. At a position z along the beam (measured from the focus), the spot size parameter w is given by a hyperbolic relation: [1] = + (), where [1] = is called the Rayleigh range as further discussed below, and is the refractive index of the medium.
, amplitude, the peak deviation of the function from zero. t {\displaystyle t} , the real independent variable , usually representing time in seconds . ω {\displaystyle \omega } , angular frequency , the rate of change of the function argument in units of radians per second .
Here the coefficient A is the amplitude, x 0, y 0 is the center, and σ x, σ y are the x and y spreads of the blob. The figure on the right was created using A = 1, x 0 = 0, y 0 = 0, σ x = σ y = 1.
The logarithmic decrement can be obtained e.g. as ln(x 1 /x 3).Logarithmic decrement, , is used to find the damping ratio of an underdamped system in the time domain.. The method of logarithmic decrement becomes less and less precise as the damping ratio increases past about 0.5; it does not apply at all for a damping ratio greater than 1.0 because the system is overdamped.