Search results
Results From The WOW.Com Content Network
Infinitesimal numbers were introduced in the development of calculus, in which the derivative was first conceived as a ratio of two infinitesimal quantities. This definition was not rigorously formalized. As calculus developed further, infinitesimals were replaced by limits, which can be calculated using the standard real numbers.
The infinitesimal increments are called differentials. Related to this is the integral in which the infinitesimal increments are summed (e.g. to compute lengths, areas and volumes as sums of tiny pieces), for which Leibniz also supplied a closely related notation involving the same differentials, a notation whose efficiency proved decisive in ...
In mathematics education, calculus is an abbreviation of both infinitesimal calculus and integral calculus, which denotes courses of elementary mathematical analysis.. In Latin, the word calculus means “small pebble”, (the diminutive of calx, meaning "stone"), a meaning which still persists in medicine.
The term differential is used nonrigorously in calculus to refer to an infinitesimal ("infinitely small") change in some varying quantity. For example, if x is a variable, then a change in the value of x is often denoted Δx (pronounced delta x). The differential dx represents an infinitely small change in the variable x. The idea of an ...
For example, if n is a hyperinteger, i.e. an element of *N − N, then 1/n is an infinitesimal. A hyperreal r is limited (or finite) if and only if its absolute value is dominated by (less than) a standard integer. The limited hyperreals form a subring of *R containing the reals. In this ring, the infinitesimal hyperreals are an ideal.
In his 1821 book Cours d'analyse, Augustin-Louis Cauchy discussed variable quantities, infinitesimals and limits, and defined continuity of = by saying that an infinitesimal change in x necessarily produces an infinitesimal change in y, while Grabiner claims that he used a rigorous epsilon-delta definition in proofs. [2]
The differential was first introduced via an intuitive or heuristic definition by Isaac Newton and furthered by Gottfried Leibniz, who thought of the differential dy as an infinitely small (or infinitesimal) change in the value y of the function, corresponding to an infinitely small change dx in the function's argument x.
[1] [3] For example, if a line is viewed as the set of all of its points, their infinite number (i.e., the cardinality of the line) is larger than the number of integers. [4] In this usage, infinity is a mathematical concept, and infinite mathematical objects can be studied, manipulated, and used just like any other mathematical object.