Search results
Results From The WOW.Com Content Network
A trie is a type of search tree where – unlike for example a B-tree – keys are not stored in the nodes but in the path to leaves. The key is distributed across the tree structure. In a "classic" trie, each node with its child-branches represents one symbol of the alphabet of one position (character) of a key.
[8] In computing, binary trees can be used in two very different ways: First, as a means of accessing nodes based on some value or label associated with each node. [9] Binary trees labelled this way are used to implement binary search trees and binary heaps, and are used for efficient searching and sorting.
An x-fast trie is a bitwise trie: a binary tree where each subtree stores values whose binary representations start with a common prefix. Each internal node is labeled with the common prefix of the values in its subtree and typically, the left child adds a 0 to the end of the prefix, while the right child adds a 1.
This is a list of well-known data structures. For a wider list of terms, see list of terms relating to algorithms and data structures. For a comparison of running times for a subset of this list see comparison of data structures.
A splay tree is a binary search tree with the additional property that recently accessed elements are quick to access again. Like self-balancing binary search trees, a splay tree performs basic operations such as insertion, look-up and removal in O(log n) amortized time.
In computer science, tree traversal (also known as tree search and walking the tree) is a form of graph traversal and refers to the process of visiting (e.g. retrieving, updating, or deleting) each node in a tree data structure, exactly once. Such traversals are classified by the order in which the nodes are visited.
A hash tree allows efficient and secure verification of the contents of a large data structure. A hash tree is a generalization of a hash list and a hash chain. Demonstrating that a leaf node is a part of a given binary hash tree requires computing a number of hashes proportional to the logarithm of the number of leaf nodes in the tree. [1]
To form a binary tree from an arbitrary k-ary tree by this method, the root of the original tree is made the root of the binary tree. Then, starting with the root, each node's leftmost child in the original tree is made its left child in the binary tree, and its nearest sibling to the right in the original tree is made its right child in the ...