When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    In mathematics, particularly in the area of arithmetic, a modular multiplicative inverse of an integer a is an integer x such that the product ax is congruent to 1 with respect to the modulus m. [1] In the standard notation of modular arithmetic this congruence is written as (),

  3. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.

  4. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    Existence: There exists an integer denoted a −1 such that aa −1 ≡ 1 (mod m) if and only if a is coprime with m. This integer a −1 is called a modular multiplicative inverse of a modulo m. If a ≡ b (mod m) and a −1 exists, then a −1 ≡ b −1 (mod m) (compatibility with multiplicative inverse, and, if a = b, uniqueness modulo m).

  5. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    Perl's Math::BigInt module has a bmodpow() method to perform modular exponentiation; Raku has a built-in routine expmod. Go's big.Int type contains an Exp() (exponentiation) method whose third parameter, if non-nil, is the modulus; PHP's BC Math library has a bcpowmod() function to perform modular exponentiation

  6. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    Some programming languages such as Lisp, Python, Perl, Haskell, Ruby and Raku use, or have an option to use, arbitrary-precision numbers for all integer arithmetic. Although this reduces performance, it eliminates the possibility of incorrect results (or exceptions) due to simple overflow.

  7. Reverse Polish notation - Wikipedia

    en.wikipedia.org/wiki/Reverse_Polish_notation

    Video: Keys pressed for calculating eight times six on a HP-32SII (employing RPN) from 1991. Reverse Polish notation (RPN), also known as reverse Ɓukasiewicz notation, Polish postfix notation or simply postfix notation, is a mathematical notation in which operators follow their operands, in contrast to prefix or Polish notation (PN), in which operators precede their operands.

  8. Trapdoor function - Wikipedia

    en.wikipedia.org/wiki/Trapdoor_function

    It is trivial to change the padlock from open to closed without using the key, by pushing the shackle into the lock mechanism. Opening the padlock easily, however, requires the key to be used. Here the key t is the trapdoor and the padlock is the trapdoor function.

  9. Residue number system - Wikipedia

    en.wikipedia.org/wiki/Residue_number_system

    Using a residue numeral system for arithmetic operations is also called multi-modular arithmetic. Multi-modular arithmetic is widely used for computation with large integers, typically in linear algebra , because it provides faster computation than with the usual numeral systems, even when the time for converting between numeral systems is ...