When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pole and polar - Wikipedia

    en.wikipedia.org/wiki/Pole_and_polar

    Conversely, the polar line (or polar) of a point Q in a circle C is the line L such that its closest point P to the center of the circle is the inversion of Q in C. If a point A lies on the polar line q of another point Q, then Q lies on the polar line a of A. More generally, the polars of all the points on the line q must pass through its pole Q.

  3. Polar point group - Wikipedia

    en.wikipedia.org/wiki/Polar_point_group

    In geometry, a polar point group is a point group in which there is more than one point that every symmetry operation leaves unmoved. [1] The unmoved points will constitute a line, a plane, or all of space. While the simplest point group, C 1, leaves all points invariant, most polar point groups will move some, but not all points. To describe ...

  4. Polar coordinate system - Wikipedia

    en.wikipedia.org/wiki/Polar_coordinate_system

    Points in the polar coordinate system with pole O and polar axis L. In green, the point with radial coordinate 3 and angular coordinate 60 degrees or (3, 60°). In blue, the point (4, 210°). In mathematics, the polar coordinate system specifies a given point in a plane by using a distance and an angle as its two coordinates. These are

  5. Spherical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Spherical_coordinate_system

    Once the radius is fixed, the three coordinates (r, θ, φ), known as a 3-tuple, provide a coordinate system on a sphere, typically called the spherical polar coordinates. The plane passing through the origin and perpendicular to the polar axis (where the polar angle is a right angle) is called the reference plane (sometimes fundamental plane).

  6. Duality (projective geometry) - Wikipedia

    en.wikipedia.org/wiki/Duality_(projective_geometry)

    In the general projective plane case where duality means plane duality, the definitions of polarity, absolute elements, pole and polar remain the same. Let P denote a projective plane of order n. Counting arguments can establish that for a polarity π of P: [17] The number of non-absolute points (lines) incident with a non-absolute line (point ...

  7. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    Draw the normal to that plane at the centre: it intersects the surface at two points and the point that is on the same side of the plane as A is (conventionally) termed the pole of A and it is denoted by A'. The points B' and C' are defined similarly. The triangle A'B'C' is the polar triangle corresponding to triangle ABC.

  8. Projective geometry - Wikipedia

    en.wikipedia.org/wiki/Projective_geometry

    The only projective geometry of dimension 0 is a single point. A projective geometry of dimension 1 consists of a single line containing at least 3 points. The geometric construction of arithmetic operations cannot be performed in either of these cases. For dimension 2, there is a rich structure in virtue of the absence of Desargues' Theorem.

  9. Coordinate systems for the hyperbolic plane - Wikipedia

    en.wikipedia.org/wiki/Coordinate_systems_for_the...

    Points in the polar coordinate system with pole O and polar axis L. In green, the point with radial coordinate 3 and angular coordinate 60 degrees or (3, 60°). In blue, the point (4, 210°). The polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and ...