Search results
Results From The WOW.Com Content Network
The molar ionic strength, I, of a solution is a function of the concentration of all ions present in that solution. [3]= = where one half is because we are including both cations and anions, c i is the molar concentration of ion i (M, mol/L), z i is the charge number of that ion, and the sum is taken over all ions in the solution.
Molar concentration or molarity is most commonly expressed in units of moles of solute per litre of solution. [1] For use in broader applications, it is defined as amount of substance of solute per unit volume of solution, or per unit volume available to the species, represented by lowercase : [2]
C b is the concentration of the O and R species in the bulk; C is the concentration of the electrolyte; A denotes the surface area; Θ denotes the fraction of the O and R species present. The equation for A W applies to both reversible and quasi-reversible reactions for which both halves of the couple are soluble.
The relative activity of a species i, denoted a i, is defined [4] [5] as: = where μ i is the (molar) chemical potential of the species i under the conditions of interest, μ o i is the (molar) chemical potential of that species under some defined set of standard conditions, R is the gas constant, T is the thermodynamic temperature and e is the exponential constant.
There are three common types of chemical reaction where normality is used as a measure of reactive species in solution: In acid-base chemistry, normality is used to express the concentration of hydronium ions (H 3 O +) or hydroxide ions (OH −) in a solution. Here, 1 / f eq is an integer value. Each solute can produce one or more ...
The Debye–Hückel theory [7] was based on the assumption that each ion was surrounded by a spherical "cloud" or ionic atmosphere made up of ions of the opposite charge. Expressions were derived for the variation of single-ion activity coefficients as a function of ionic strength. This theory was very successful for dilute solutions of 1:1 ...
[4] [5] The Jones–Dole expression works well up to about 1 M, but at higher concentrations breaks down, as the viscosity of all solutions increase rapidly at high concentrations. The large increase in viscosity as a function of solute concentration seen in all solutions above about 1 M is the effect of a jamming transition at a high ...
Hydrolysis constants of metal ions are usually fixed at values which were obtained using ligand-free solutions. When determining the stability constants for ternary complexes, M p A q B r it is common practice the fix the values for the corresponding binary complexes M p′ A q′ and M p′′ B q′′ , at values which have been determined ...