When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Ionic strength - Wikipedia

    en.wikipedia.org/wiki/Ionic_strength

    The molar ionic strength, I, of a solution is a function of the concentration of all ions present in that solution. [3]= = where one half is because we are including both cations and anions, c i is the molar concentration of ion i (M, mol/L), z i is the charge number of that ion, and the sum is taken over all ions in the solution.

  3. Molar concentration - Wikipedia

    en.wikipedia.org/wiki/Molar_concentration

    Molar concentration or molarity is most commonly expressed in units of moles of solute per litre of solution. [1] For use in broader applications, it is defined as amount of substance of solute per unit volume of solution, or per unit volume available to the species, represented by lowercase : [2]

  4. Warburg coefficient - Wikipedia

    en.wikipedia.org/wiki/Warburg_coefficient

    C b is the concentration of the O and R species in the bulk; C is the concentration of the electrolyte; A denotes the surface area; Θ denotes the fraction of the O and R species present. The equation for A W applies to both reversible and quasi-reversible reactions for which both halves of the couple are soluble.

  5. Thermodynamic activity - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_activity

    The relative activity of a species i, denoted a i, is defined [4] [5] as: = where μ i is the (molar) chemical potential of the species i under the conditions of interest, μ o i is the (molar) chemical potential of that species under some defined set of standard conditions, R is the gas constant, T is the thermodynamic temperature and e is the exponential constant.

  6. Equivalent concentration - Wikipedia

    en.wikipedia.org/wiki/Equivalent_concentration

    There are three common types of chemical reaction where normality is used as a measure of reactive species in solution: In acid-base chemistry, normality is used to express the concentration of hydronium ions (H 3 O +) or hydroxide ions (OH −) in a solution. Here, ⁠ 1 / f eq ⁠ is an integer value. Each solute can produce one or more ...

  7. Pitzer equations - Wikipedia

    en.wikipedia.org/wiki/Pitzer_equations

    The Debye–Hückel theory [7] was based on the assumption that each ion was surrounded by a spherical "cloud" or ionic atmosphere made up of ions of the opposite charge. Expressions were derived for the variation of single-ion activity coefficients as a function of ionic strength. This theory was very successful for dilute solutions of 1:1 ...

  8. Jones–Dole equation - Wikipedia

    en.wikipedia.org/wiki/Jones–Dole_equation

    [4] [5] The Jones–Dole expression works well up to about 1 M, but at higher concentrations breaks down, as the viscosity of all solutions increase rapidly at high concentrations. The large increase in viscosity as a function of solute concentration seen in all solutions above about 1 M is the effect of a jamming transition at a high ...

  9. Determination of equilibrium constants - Wikipedia

    en.wikipedia.org/wiki/Determination_of...

    Hydrolysis constants of metal ions are usually fixed at values which were obtained using ligand-free solutions. When determining the stability constants for ternary complexes, M p A q B r it is common practice the fix the values for the corresponding binary complexes M p′ A q′ and M p′′ B q′′ , at values which have been determined ...