Search results
Results From The WOW.Com Content Network
The non-linearity of the Gross–Pitaevskii equation has its origin in the interaction between the particles: setting the coupling constant of interaction in the Gross–Pitaevskii equation to zero (see the following section) recovers the single-particle Schrödinger equation describing a particle inside a trapping potential.
It can be adapted to similar equations e.g. F = ma, v = fλ, E = mcΔT, V = π r 2 h and τ = rF sinθ. When a variable with an exponent or in a function is covered, the corresponding inverse is applied to the remainder, i.e. = and = .
For two pairwise interacting point particles, the gravitational potential energy is the work that an outside agent must do in order to quasi-statically bring the masses together (which is therefore, exactly opposite the work done by the gravitational field on the masses): = = where is the displacement vector of the mass, is gravitational force acting on it and denotes scalar product.
The gravitational potential (V) at a location is the gravitational potential energy (U) at that location per unit mass: =, where m is the mass of the object. Potential energy is equal (in magnitude, but negative) to the work done by the gravitational field moving a body to its given position in space from infinity.
As a consequence, the gravitational potential satisfies Poisson's equation. See also Green's function for the three-variable Laplace equation and Newtonian potential. The integral may be expressed in terms of known transcendental functions for all ellipsoidal shapes, including the symmetrical and degenerate ones. [5]
Critical unit stream power is the amount of stream power needed to displace a grain of a specific size, it is given by the equation: ω 0 = τ 0 ν 0 {\displaystyle \omega _{0}=\tau _{0}\nu _{0}} where τ 0 is the critical shear stress of the grain size that will be moved which can be found in the literature or experimentally determined while v ...
The equation of motion for the particle derived above = + + can be rewritten using the definition of the Schwarzschild radius r s as = [] + + (+) which is equivalent to a particle moving in a one-dimensional effective potential = + (+) The first two terms are well-known classical energies, the first being the attractive Newtonian gravitational ...
Diagram regarding the confirmation of gravitomagnetism by Gravity Probe B. Gravitoelectromagnetism, abbreviated GEM, refers to a set of formal analogies between the equations for electromagnetism and relativistic gravitation; specifically: between Maxwell's field equations and an approximation, valid under certain conditions, to the Einstein field equations for general relativity.