When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Orbital speed - Wikipedia

    en.wikipedia.org/wiki/Orbital_speed

    In gravitationally bound systems, the orbital speed of an astronomical body or object (e.g. planet, moon, artificial satellite, spacecraft, or star) is the speed at which it orbits around either the barycenter (the combined center of mass) or, if one body is much more massive than the other bodies of the system combined, its speed relative to the center of mass of the most massive body.

  3. Escape velocity - Wikipedia

    en.wikipedia.org/wiki/Escape_velocity

    Escape speed at a distance d from the center of a spherically symmetric primary body (such as a star or a planet) with mass M is given by the formula [2] [3] = = where: G is the universal gravitational constant (G ≈ 6.67 × 10 −11 m 3 ⋅kg −1 ⋅s −2 ‍ [4])

  4. Standard gravitational parameter - Wikipedia

    en.wikipedia.org/wiki/Standard_gravitational...

    For a circular orbit around a central body, where the centripetal force provided by gravity is F = mv 2 r −1: = = =, where r is the orbit radius, v is the orbital speed, ω is the angular speed, and T is the orbital period.

  5. Jupiter - Wikipedia

    en.wikipedia.org/wiki/Jupiter

    Jupiter's moons were classified into four groups of four, based on their similar orbital elements. [204] This picture has been complicated by the discovery of numerous small outer moons since 1999. Jupiter's moons are divided into several different groups, although there are two known moons which are not part of any group (Themisto and Valetudo ...

  6. Orbit insertion - Wikipedia

    en.wikipedia.org/wiki/Orbit_insertion

    In spaceflight an orbit insertion is an orbital maneuver which adjusts a spacecraft’s trajectory, allowing entry into an orbit around a planet, moon, or other celestial body. [1] An orbit insertion maneuver involves either deceleration from a speed in excess of the respective body's escape velocity, or acceleration to it from a lower speed.

  7. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    For the case of orbital transfer between non-coplanar orbits, the change-of-plane thrust must be made at the point where the orbital planes intersect (the "node"). As the objective is to change the direction of the velocity vector by an angle equal to the angle between the planes, almost all of this thrust should be made when the spacecraft is ...

  8. Characteristic energy - Wikipedia

    en.wikipedia.org/wiki/Characteristic_energy

    Every object in a 2-body ballistic trajectory has a constant specific orbital energy equal to the sum of its specific kinetic and specific potential energy: = = =, where = is the standard gravitational parameter of the massive body with mass , and is the radial distance from its center. As an object in an escape trajectory moves outward, its ...

  9. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    The speed of the planet in the main orbit is constant. Despite being correct in saying that the planets revolved around the Sun, Copernicus was incorrect in defining their orbits. Introducing physical explanations for movement in space beyond just geometry, Kepler correctly defined the orbit of planets as follows: [ 1 ] [ 2 ] [ 5 ] : 53–54