When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Nearest neighbour algorithm - Wikipedia

    en.wikipedia.org/wiki/Nearest_neighbour_algorithm

    The nearest neighbour algorithm was one of the first algorithms used to solve the travelling salesman problem approximately. In that problem, the salesman starts at a random city and repeatedly visits the nearest city until all have been visited. The algorithm quickly yields a short tour, but usually not the optimal one.

  3. Nearest neighbor search - Wikipedia

    en.wikipedia.org/wiki/Nearest_neighbor_search

    Often such an algorithm will find the nearest neighbor in a majority of cases, but this depends strongly on the dataset being queried. Algorithms that support the approximate nearest neighbor search include locality-sensitive hashing, best bin first and balanced box-decomposition tree based search. [22]

  4. k-nearest neighbors algorithm - Wikipedia

    en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

    If k = 1, then the object is simply assigned to the class of that single nearest neighbor. The k-NN algorithm can also be generalized for regression. In k-NN regression, also known as nearest neighbor smoothing, the output is the property value for the object. This value is the average of the values of k nearest neighbors.

  5. k-d tree - Wikipedia

    en.wikipedia.org/wiki/K-d_tree

    SciPy, a Python library for scientific computing, contains implementations of k-d tree based nearest neighbor lookup algorithms. scikit-learn , a Python library for machine learning, contains implementations of k -d trees to back nearest neighbor and radius neighbors searches.

  6. Travelling salesman problem - Wikipedia

    en.wikipedia.org/wiki/Travelling_salesman_problem

    Nearest Neighbour algorithm for a TSP with 7 cities. The solution changes as the starting point is changed. The nearest neighbour (NN) algorithm (a greedy algorithm) lets the salesman choose the nearest unvisited city as his next move. This algorithm quickly yields an effectively short route.

  7. Neighbourhood components analysis - Wikipedia

    en.wikipedia.org/wiki/Neighbourhood_components...

    Neighbourhood components analysis is a supervised learning method for classifying multivariate data into distinct classes according to a given distance metric over the data. . Functionally, it serves the same purposes as the K-nearest neighbors algorithm and makes direct use of a related concept termed stochastic nearest neighbo

  8. Nearest neighbor graph - Wikipedia

    en.wikipedia.org/wiki/Nearest_neighbor_graph

    However, the nearest neighbor relation is not a symmetric one, i.e., p from the definition is not necessarily a nearest neighbor for q. In theoretical discussions of algorithms a kind of general position is often assumed, namely, the nearest (k-nearest) neighbor is unique for each object. In implementations of the algorithms it is necessary to ...

  9. Nearest neighbor - Wikipedia

    en.wikipedia.org/wiki/Nearest_neighbor

    Nearest neighbor graph in geometry; Nearest neighbor function in probability theory; Nearest neighbor decoding in coding theory; The k-nearest neighbor algorithm in machine learning, an application of generalized forms of nearest neighbor search and interpolation; The nearest neighbour algorithm for approximately solving the travelling salesman ...