Search results
Results From The WOW.Com Content Network
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
Since these situations normally coincide with the case of very large matrices (which exceed the cache size), performing the transposition in-place with minimal additional storage becomes desirable. Also, as a purely mathematical problem, in-place transposition involves a number of interesting number theory puzzles that have been worked out over ...
In computer algorithms, block swap algorithms swap two regions of elements of an array.It is simple to swap two non-overlapping regions of an array of equal size. However, it is not simple to swap two non-overlapping regions of an array in-place that are next to each other, but are of unequal sizes (such swapping is equivalent to array rotation).
More generally, there are d! possible orders for a given array, one for each permutation of dimensions (with row-major and column-order just 2 special cases), although the lists of stride values are not necessarily permutations of each other, e.g., in the 2-by-3 example above, the strides are (3,1) for row-major and (1,2) for column-major.
c = a + b In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also ...
The Hadamard product operates on identically shaped matrices and produces a third matrix of the same dimensions. In mathematics, the Hadamard product (also known as the element-wise product, entrywise product [1]: ch. 5 or Schur product [2]) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements.
It is a generalization of the logistic function to multiple dimensions, and is used in multinomial logistic regression. The softmax function is often used as the last activation function of a neural network to normalize the output of a network to a probability distribution over predicted output classes.
Example C++ code for several 1D, 2D and 3D spline interpolations (including Catmull-Rom splines). Multi-dimensional Hermite Interpolation and Approximation, Prof. Chandrajit Bajaja, Purdue University; Python library containing 3D and 4D spline interpolation methods.